Available online at www.sciencedirect.com

il . . JOURNAL OF
*»” ScienceDirect SOUND AND
VIBRATION

ELSEVIER Journal of Sound and Vibration 324 (2009) 221-242

www.elsevier.com/locate/jsvi

A receptance harmonic balance technique for the
computation of the vibration of a whole aero-engine model
with nonlinear bearings

Philip Bonello™, Pham Minh Hai

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK

Received 28 July 2008; received in revised form 24 November 2008; accepted 22 January 2009
Handling Editor: C.L. Morfey
Available online 3 March 2009

Abstract

Current frequency-domain techniques for the rapid computation of the steady-state periodic vibration of unbalanced
rotordynamic systems with nonlinear bearings are not suitable for realistic engine structures like aero-engine assemblies. In
this paper, a whole-engine receptance harmonic balance method (RHBM) is devised that, for the first time, allows the
frequency domain analysis of such a structure. The method uses the receptance functions of the linear part of the structure
under non-rotational conditions, obtained from a one-off eigenvalue analysis, to set up the equations for the rotating
nonlinear assembly. The unknowns solved for are the Fourier coefficients of the relative displacements at the nonlinear
bearings plus a few extra unknowns. These latter unknowns enable solution of the problem in the presence of statically
indeterminate rotors that have just one linear point support or none at all. Simulation tests on a realistically sized
representative twin-spool engine showed excellent correlation with time-marching results obtained from the recently
developed impulsive receptance method (IRM). It is demonstrated that, when used in conjunction with a time-marching
solver like the IRM, the RHBM is a very powerful tool that should greatly facilitate the hitherto highly restricted nonlinear
dynamic analysis of realistic engine structures.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Aero-engine assemblies are complex structures typically involving at least two nested rotors mounted within
a flexible casing via squeeze-film damper (SFD) bearings. Most SFDs are unsupported, as can be seen in
Fig. 1, where a parallel retainer spring is only used with one SFD at the end of each rotor. As observed in
Ref. [1], the deployment of SFDs into such structures is highly cost-effective but requires careful calculation
since they can be highly nonlinear in their performance.

The solution techniques for the response of a nonlinear system subjected to periodic external excitation (e.g.
rotor unbalance) can be broadly categorised into either time domain or frequency domain techniques. Time
domain (“‘time-marching”) techniques march forward in time past the initial transient stage to yield the
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Nomenclature

OF matrix/vector transpose

['] d()/dr

0O, ( )g;)s, ()g‘g Fourier coefficients of vector (), e.g.
Eq. (3)

(w), Ay_u(w) accelerance
(27a) and (27b)

B(kw) matrix, Eq. (23b)

Cyy(w), Cyy(w),...... receptance matrices

Cw(w), Cyy(w) “incomplete”  receptance ma-

trices, Eqgs. (33a) and (33Db)
D(kw), E(kw), F(kw) matrices, Egs. (23a) and

Ay matrices, Eqgs.

sel¥

(25a)

g =lgh - il

gy =M Noi -+ Mga, Ng,I'

Gj total number of gyroscopic locations on
rotor no. j

H,,H,,H, “incomplete”” modal matrices defined
by Egs. (32), (40b) and (40c)

i counter for nonlinear bearings
I identity matrix
Iy polar moment of inertia at gyroscopic

location no. p of rotor no. j

j counter for rotors

J total number of rotors

k counter for harmonics

K maximum of k

L, matrix defined by Eq. (25¢)

M, N, gyroscopic moments about x and y
axes, respectively, at gyroscopic location
no. p of rotor no. j

Nextra ~ NUmber of extra unknowns (q)

nr number of points of SFD force time
history (Fig. 3)

N number of SFDs

p counter for gyroscopic effect location on
rotor no. j

P total number of rigid body modes

P block diagonal matrix of diagonal sub-
matrices P, j=1...J

Py =Qpdiagi—Ip1. Lo, ., ~ 1o, g}

q vector of modal coordinates (Eq. (29))

a.q rigid and flexible mode subvectors of q
(Eq. (30))

(0] positive integer (Eq. (1))
Qj(kw) matrix defined by Eq. (25¢)
r counter for modes

R total number of modes considered

S counter for unbalance location on rotor
no. j

S; maximum of s

t time (s)

u unbalance excitation vector Eq. (9)

Ugj)cos, UG)sin component  amplitudes  of  wu;
Eqgs. (10a) and (10b)
Ujs  unbalance at location s on rotor no. j

(kgm)

v =xy—xg=[v - vy

Vi = [x5, — x, ¥y, — J’B,-]T

\A vector of static Cartesian offsets at
squeeze-film no. i (Eq. (34))

w static loading distribution vector (all
rotors)

x, y, z Cartesian frame, Fig. 1

XB;, Vp,» X3, ;. instantaneous Cartesian displace-
ments of the journal and housing centres
J,, B; at SFD no. i

Xy, Xp = [le Vi Xy yJN]Ta

[xB, Vg, -~ xBy Vgl
z vector of unknowns (Eq. (39))
Z initial approximation for z

%pps By Totational deformation about x, y axes,
respectively, at gyroscopic location no. p
of rotor no. j

Yo)s angle defined in text (below Egs. (10a)

and (10b))
5 1, koo = .Q(]')
k@ Qg = 0, kw# Q(i)
0 = [e(Tl) e e(TJ)]T )
0 = [Bun 2o "'ﬁ(j)G,- %))
A,A  diagonal matrices, Eqs. (38) and (40a)
w fundamental circular frequency of the

RHBM (Eq. (1))

p,p%), ) vectors of Fourier coefficients of all
SFD forces (Egs. (8a)—(8c))

p; =[0,, le_]T (Cartesian forces on journal
at squeeze-film no. i)

b angle defined in text (below Egs. (10a)
and (10b))

x vector function of z, &; ) and Q (Eq. (36))

f{), g) mass-normalised eigenvectors defining

the x and yp displacements of the
squeeze-film terminals J;, B; in mode no. r

W =0 -
E?el sub-vector of \|J(J") for selected journals

(Section 2.3)
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\j/ff(},), \jl(g’), \jJS:) mass-normalised eigenvectors eval- w generic circular frequency
uated at degrees of freedom correspond- , natural frequency of mode no. r
ing to directions and locations of Q) rotational speed of rotor no. j (rad/s)
elements in ug;, g, and w Q.  reference unbalanced shaft speed (Eq. (1))

g') mass-normalised eigenvectors evaluated

at degrees of freedom in 0

(s
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Fig. 1. Schematic of a representative twin-spool engine (abbreviations “LP” and “HP” stand for “low pressure” and ‘‘high pressure”
respectively).

steady-state response, which may not necessarily be periodic. Frequency domain (“periodic solution”)
techniques, which employ analytical methods like harmonic balance [2—4] or trigonometric collocation [5], are
inherently very much faster since they directly yield steady-state solutions that are assumed to be periodic at
an assumed fundamental frequency. However, such periodic vibration may not always be physically possible,
in which case the computed periodic solutions represent a dynamic state that is unstable to the slightest
physical perturbation. Time-marching is then used to obtain the actual (stable) vibration. An efficient
computational facility takes advantage of the relative merits of both categories through an integrated
approach that makes effective use of both [6]. This paper will focus on the frequency domain approach.

The direct study of real engine structures has been hindered by the fact that the various frequency-domain
techniques proposed for the computation of the unbalance vibration are not suitable for complex systems.
Indeed, such methods are almost invariably illustrated on simple rotor-bearing systems e.g. Refs. [2-7].
Moreover, commercial finite-clement (FE) codes do not possess a frequency domain solver for nonlinear
whole-engine modelling.

The common strategy of all proposed frequency domain techniques for the analysis of rotating systems with
concentrated nonlinearities like fluid bearings is to consider the forces from these elements as external to the
remaining linear part. What is ultimately solved is a set of nonlinear algebraic equations whose unknowns are
the Fourier coefficients of the degrees of freedom at the nonlinearities only. The difference between the various
frequency domain techniques lies mainly in the way these equations are generated. Such techniques can then
be classified as follows: (a) transfer matrix approach e.g. Ref. [2]; (b) direct FE approach e.g. Refs. [3,4];
(c¢) direct modal approach [5]; and (d) receptance harmonic balance approach [6,7]. The transfer matrix
approach is not suited for modelling complex sub-systems such as the engine casing. The direct FE approach
applies the harmonic balance or trigonometric collocation method to the full FE equations of the system. A
condensation technique, involving the inversion of large matrices, can then be applied to reduce the number of
unknowns to those associated only with the nonlinear degrees of freedom. Such a process is not feasible for a
whole-engine model. As stated in Ref. [5], approach (c) is more tractable to large systems since it uses
component mode synthesis. However, this requires the prior solution of the eigenproblem of the rotating linear
part and modal truncation. The latter has been shown in Ref. [1] to be a problem with a real engine due to a
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high modal density at relatively low frequencies. Moreover, gyroscopic effects would necessitate the solution
of the eigenproblem for each speed.

The receptance harmonic balance method (RHBM), as presented in Refs. [6,7], shows great potential for the
analysis of complex structures. The nonlinear algebraic equations are yielded without the need of any costly
condensation, by applying the force—displacement relationships for each harmonic of the vibration using the
frequency response functions (receptances) of the linear part. There is no problem with modal truncation since
any desired number of modes can be included in the receptance expressions. This concept was first introduced
by Ren and Beards [8] for a simple non-rotating structure. The RHBM was adapted by Bonello et al. [6,7] for
a rotating system comprising a single shaft with negligible gyroscopic effect running on nonlinear bearings
housed within a flexible support structure. Among the issues considered in Refs. [6,7] was the question of how
to derive the equations for the zero-frequency harmonic (i.e. the mean component of the vibration) when the
presence of rigid body modes of the linear part cause the relevant receptance functions to be undefined at zero-
frequency. Two common examples of this case are: a rotor pivoted at one end by a self-aligning rolling-
element bearing and running on an unsupported SFD at the other end [6]; or a rotor running only on two
unsupported SFDs [7]. The linear part of the system then comprises a pinned-free rotor in the former case, and
a free—free rotor in the latter case. The solution provided in Refs. [6,7] was to consider the fact that the mean
components of both velocity and acceleration of the vibration of the nonlinear system are zero. Hence, at zero-
frequency such a rotor is in a state of ““pseudo-static” equilibrium under the action of the static external forces
and the mean SFD forces. The term “pseudo” is used here since the latter forces are themselves generated by
the vibration. The works in Refs. [6,7] then proceeded to solve for the vibration response of a statically
determinate rotor with unsupported SFDs by including the pseudo-static equilibrium equations with the rest
of the dynamic frequency response equations.

If the work in Refs. [6,7] is to be used as the basis for solving the unbalance response of a whole aero-engine
model the following outstanding issues need to be resolved:

® The presence of rotors that introduce rigid body modes in the linear part but are statically indeterminate
when the nonlinear bearings are in place: this is clearly the case for the low-pressure (LP) spool in Fig. 1,
where the rigid body modes define pivoting motion about J;.

e Gyroscopic effects: for the receptance approach to be feasible, the receptances should pertain to the linear
part under non-rotational conditions, making them independent of rotational speed, allowing a one-off
analysis of the linear part. Hence, a means has to be found of including gyroscopic effects into the nonlinear
problem without adding to the number of unknowns.

® An efficient post-solution recovery of the full set of degrees of freedom.

o Unbalance excitation from more than one rotor: for single shaft systems the external excitation (unbalance)
is at a single frequency—single-frequency unbalance (SFU). This also applies for multi-spool systems where
the unbalance distribution is confined to only one of the shafts. Frequency domain techniques have so far
been used only on SFU problems. In practice, the unbalance may be located on more than one rotor and
the unbalanced rotors will turn at different speeds, resulting in multi-frequency unbalance (MFU). It is
clearly desirable for the method to be able to handle MFU conditions.

The work presented in this paper resolves the above-mentioned issues. In addition, it reduces the number of
unknowns by about half that in previous research by formulating the equations in terms of the relative rather
than the absolute degrees of freedom at the nonlinearities. This is possible since the inertia of the fluid films at
the bearings is commonly assumed to be negligible (e.g. Refs. [1-7]—indeed this assumption appears to be
essential in cases where both journal and bearing housing vibrate).

This work is the second stage of a project whose overall aim is to deliver a suite of computational techniques
for unbalance response computation, suitable for generic whole-engine models, which will significantly extend
the capability of current FE packages. The proposed analysis of the nonlinear rotating assembly uses the
modal parameters of the undamped linear part of the assembly under non-rotating conditions (see Fig. 2).
Nastran™ is used for the linear pre-processing and specially written Matlab® routines for the subsequent
nonlinear computation which has both time domain and frequency domain options. The first stage of the
project has produced a novel fast time domain technique called the impulsive receptance method (IRM) [1].
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Frequency domain:

RHBM l

I FE model @ Eigenvalue analysis 1 I Stability analysis I
“ J 4
Time domain: IRM I(_
Pre-processing (NASTRAN):
linear undamped part (no rotation) — _/
~—

Nonlinear computation (MATLAB):
nonlinear rotating assembly

Fig. 2. Overall computational procedure.

The present paper deals with the development of a whole-engine RHBM. The development of a fast stability-
check routine for the RHBM solutions will be the subject of a separate paper.

The theory of whole-engine RHBM is presented in the following section. In Section 3 the method is tested
on a realistically sized representative twin-spool aero-engine model and validated against the IRM.

2. Theory

2.1. System description

The modal parameters in all the theory pertain to the linear part of the assembly under non-rotating
conditions. By ““linear part” is meant the structure that remains in Fig. 1 when the SFDs are replaced by gaps.
The damping in the linear part of an engine is commonly regarded as negligible [6]. The linear part is acted on
by the SFD forces, unbalance forces, static loading on the rotors, and the gyroscopic moments on the rotors.
The engine is assumed to have J rotors each with speeds Q;), j=1...J.

In the RHBM, the vibration is assumed to be periodic with a fundamental frequency of w where

w = Q(jref)/Q' (1)

Q is a positive integer and € ) is termed the “‘reference unbalanced shaft speed”. In the case of SFU, ; ) is
the speed of the (only) unbalanced shaft and Q is commonly taken as 1. In the case of MFU, €; , is the speed
of the slowest unbalanced shaft and the value of Q will be chosen according to the ratio of the speeds of the
unbalanced shafts (Section 3.2.2).

Let x3,, y;, and xp,, yp, be the instantaneous Cartesian displacements of the journal and housing centres J;, B;
at SFD no. i, both measured from the static equilibrium position of B; under no rotor loading. Hence, if

Xy = [le Vi Xy yJN]Ta XB = [XBI VB, XBy yBN]Ta then:
K
Xy =Xy + Z{xf,k)coS cos kwt + xf,k)sm sin kwt}, (2a)
k=1
K
X =Xp+ Y (X ros €O koot + X sin kewt). (2b)
k=1

Let p; =[0,, le_]T define the Cartesian forces on the journal J; of SFD no. i, i =1...N. The forces on the
corresponding bearing housing B; are hence given by —p,;. Now p; = p;(v;, V;) where v; = [xj, — xp, y;, — yBl_]T
and p; = p,(v;, V;) is calculated from the physical model of the SFD [1,6]. Hence,

sin kcwot}, (3)

i sin

K
vi=Vi+ Z{vﬁ’?os cos ket + v\
k=1

K
p,=p;+ Z{pgkc)os cos ket + p\* sin keot), 4)
=



226

where

Hence, if

then:

P. Bonello, P. Minh Hai | Journal of Sound and Vibration 324 (2009) 221-242

(1)
(k) (1

(k) )

(k)

pCOS =

- )
Pi(Vi,Vi cos> Vi sin> - -

(1)

P; cos(vi’ icos> Visinc oo

(1)

pz sm(vl’ i cos’vi sin? * * *

() _

pSll’l

2n/w

VB (/2 / pi(vi ) dt,

1 COSs? l sin

2n/w
v ) )= (w/n)/ p;(vi,V;) cos koot dt,

2n/w
VB Yy (w/n‘)/ p;(v;,V;) sin koot dt.

’ lCOS’ l%ll’l

Vi
v=xy—xg= | . |,
A\
Vi
V= ,
\2%
k)
V1 cos
k
ngo)s = . >
(k)
VN cos |
(O
vl sin
(ky _
Vsin =
(k)
VN sm
[
_ e (1 1) K) J(K)
- p(V vco)s’Vsm’ . Vgos’ sm )
Py
(k)
pl cos
_ Ak H (D 1
. pgo)s(v VE:O)S’ Usm’ e co)s’ vsm)
(k)
pN cos
(k)
pl sin
N (] (1) ( 1 (K) (K)
p51 (V Veoss Ysino + « > Yeos Ysin )

(k)
pN sin

(5a)

(5b)

(3¢)

(6)

(7a)

(7b)

(7¢)

(8a)

(8b)

(8¢)
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For the jth rotor the unbalances Uy, ... U()s, are concentrated at S; points. The vector of unbalance
excitations on rotor no. j can be written as

U() = Ug) cos COS ()t + Uj) sin Sin iy, ©)
where
Ugn sin(¢g) + 71
= UG cos(Pgy + 7))
U cos = 2, : , (10a)
Ugs; sin(dg) +7)s)
—Ugs; cos(@g) +7)s,)

[ Ugn cos(@g) + 76) |
Ugn sin(¢g) + vy1)
ug) sin = 27, : . (10b)
Ugs; cos(¢g) + 7ys;)
Ugs; sin(gg) +7¢)s,)

Yy S = 1 ... S, is the angular position of the unbalance at location no. s of rotor no. j relative to the angular
position of unbalance no. 1 on the same rotor (y(,, = 0 for all j). ¢ is the angular position of unbalance no. 1
on rotor no. j relative to the angular position of unbalance no. 1 on rotor no. 1 at the instant t = 0 (¢}, = 0). It
is to be noted that, for a given unbalance distribution on the engine, the values of y; ) are fixed but the values
of ¢; (j = 2,3...) are arbitrary since the angular positions of the rotors relative to each other at the reference
time ¢ = 0 are arbitrary.

For the jth rotor the gyroscopic effects are concentrated at G; points. Let g be the vector containing the
gyroscopic moments on all the rotors. Hence:

o= PO, (11)

where g, P, and the vector 0 of flexural rotations at the gyroscopic locations are defined in the Nomenclature.
Due to the periodicity of the vibration and as a result of Eq. (11), one can write:

K
0=0+ Z{B(Cﬁl cos kaot + 0% sin keot), (12)
=1

K
g= Z{g(clf))s cos kwt + ggfz sin kwt}, (13)

k=1

where

glor = kaoPO), (14a)
gl = —keoPO). (14b)
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2.2. Derivation of the block of dynamic equations

For each harmonic kw, k = 1...K, of the response at the SFDs (Egs. (2a) and (2b)) one can write the
following force—displacement relationships:

] [Cutkm) 0 ] Q1 [Cmtkm) 0 ] —p&.
xf,k)sm 0 Cyy(kw) pgﬁ) 0 Cip(kw) —pgfl)
CJg (kw) 0 gg)s i 5 CJU(,-) (kw) 0 U()) cos « !
+ +Y Skma, =1...K,
0 Cyglkw) | | g¥ = - 0 Cu (k@) | | Ug)sin
(15a)
Xpeos | [Cmakew) 0 ] W] [Castkw) 0 ] -,
Wl T o e (o8] Tl 0 et || o
Cpglhkw) 0 & XJ: . Cpuy (k) 0 o]
+ + ko, - e K
0 Cpg(kw) | | g¥) = 0 0 Cauy) (k@) | | ug)sin
(15b)
In above equations, the receptance (or “‘compliance’) matrices are defined from modal theory [9] as
(1), (0T
Caa(o) = Z"’J o (162)
\ll(’)‘ll(')T
Cip(w) = Cpy(w) = Z s (16b)
\|!(r) \l!(r)T
Cyg(@) = ; o (16¢)
v
Cyy, (@) = U (16d)
() ; w? — ?
R4y (03, (OT
Vg W
Cpp(w) = Z: ol R (16¢)
\|J(i)‘|,(r)T
Cpg(w) = ) (16f)
;w? w?
R ‘ng)\l’Elr)T
Cau () = ok (16g)
0 ; w? — w?
In the above expressions, w, (r = 1... R) are the undamped natural frequencies of the linear part. \jl(') g) are

the mass-normalised eigenvectors deﬁnlng the x, y displacements of the squeeze-film terminals J;, B; in mode
no. r. Similarly, \|lflr)_), \|l(g’) are mass-normalised eigenvectors taken at the degrees of freedom corresponding to
the directions and Yocations of the elements of ug;, and g, respectively. Defining

W=y -y (17)
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Subtracting Eq. (15b) from Eq. (15a), and using relations (16a)—(16g) one obtains:

V| [Colkm) 0 ] [Cutkm) 0 ®,
ol I T TSN PO I Cvgacw) gt
vu (kw) 0 U(j) cos
()
5(12' 5 k = 1 e K, 18
+Z i Qm[ Cvuw(kw)] [u(,)sin] (18)
where
\|,(r)\|,(')T
vv(w) ; cu, o2’ (193)
R ‘Il(r)\ll(r)T
Cul@) =D s (19b)
r=1 "1
R ‘ll(vr)‘I’EIOT
Coug (@) =D 505 (190)
r=1 r

The above matrices can be regarded compliance matrices relating the relative responses at the SFD terminals
to the various excitations.

The gyroscopic terms ggf))s, ggﬁz can be eliminated from the right-hand side of Eq. (18) as follows. By analogy
with Eq. (18), one can write a force—displacement relationship for each harmonic kw of the flexural angular
displacement 0 at the gyroscopic locations:

0L, Coy(kw) 0 &) Cog(k) 0 ®
05, 0 Coltkw) || p® 0 Coplkm) || g¥
CB“(/)(kw) 0 U(j) cos
Ok 20
+ Z k., Ceu(j>(kw)] |}l(,‘) sin (20)
where
‘l’g’)\lj(l
Co(kew) = Z — (21a)
‘l’(r)‘l’(r)T
21
Cog(kw) = 2 ol — (21b)
‘I’())\l’(r)T
Comy (62) = Zw mpr C19

r=1
g‘) being mass-normalised eigenvectors taken at the degrees of freedom corresponding to the elements in 0.
Substituting for gg’;)s, gwf from Egs. (14a) and (14b) into Eq. (20) and solving the resulting equations for 6%

CcosS?
0% one obtains

sin
(k)
9511’1
| T
0%k

D(kww)Coy(kw) D(kw)B(kw)Coy(kw) | | p©

—D(kW)B(kw)Ceu<,) (kw) D(kw)ceu(/) (kwo) ] l U(j) cos ]

—D(kw)B(kw)Coy(kw) D(kw)Coy (ko) Hg@s]

J
kw0 22
+j; k=% DkwCoy,, (ko) D(kw)B(kw)Cou, (ko) | | ) sin )
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where
D(kw) = (I + B(kw)*) ™", (23a)

B(kw) = kwCog(kw)P. (23b)
Hence, from Eqs. (14a) and (14b) and Eq. (22), one can eliminate g*) gsni from Eq. (18):

vl Cw(kw) — E(kw) F(kw) e
NCN

(k)

—F(kw) Cy(kw) — E(kw) | | p)
5 Cvu(,-) (kw) - L(j)(kw) Q(/)(kw) Ugj) cos i 1 % 4
* ; k= —Qj(kw) Cyu, (k@) — Lj(kw) | | ug)sin =1k @Y

where

E(kw) = kwCyy(kw)PD(kw)B(kw)Ceqy(kw), (25a)
F(kw) = kwC\g(kw)PD(kww)Coy(kw), (25b)
L) (kw) = kwCyy(kw)PD(kw)B(kw)Coy, (kw), (25¢)
Qj)(kw) = kwC\g(kw)PD(kw)Cey, (kw). (25d)

Eq. (24) constitute the dynamic block of the RHBM equations. By consideration of the relationships in
Eqgs. (8a)—(8c), it is clear that Eqgs. (24) constitute a set of 2V x 2K equations in 2N x (2K + 1) unknowns
(which are the Fourier coefficients of the relative displacements at the SFDs, Egs. (7a)—(7¢)). A block of
“pseudo-static” equations (defining force—response relations at zero-frequency) will complete the equation set.

2.3. Derivation of the block of pseudo-static equations

As can be seen from Eq. (19a), the presence of rigid body modes (for which w, = 0) in the linear part, would
result in the receptance matrix C,,(0) — Fo00. Note that the rigid body modes define rigid body motion of one
or more rotors in the xz or yz planes (the superfluous modes defining rigid body spin of each rotor about its
axis are removed). As discussed in the Introduction, p and the static loading w are in equilibrium. This
principle can be applied in a systematic fashion by writing zero-frequency force—acceleration response
equations at selected journals J; as follows:

0 = AJselV(O)ﬁ + AJse]w(O)w’ (26)

where the accelerance matrices are defined as

i LU T
Ay (@) = S, (27a)
1 r=1 a)2 -
R ql(r) \Il(’)T
Asan(@) =3~ Tl (7b)

r=1

f,r)cl are the mass-normalised eigenvectors defining the x, y displacements at the selected journals J;. If the

linear part has a total of P rigid body modes i.e. w;...wp =0, then:

P
As (0 = U yiT, (28a)
r=1

P
Ay w(0) =D WP T, (28b)
r=1
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In the case of the engine shown in Fig. 1, P = 4, since each rotor has two rigid body modes: one per plane xz,
yz, defining pivoting motion about J; or J;. Egs. (26) effectively define moment equilibrium in each plane
about each pivot. In general, the method of Eq. (26) yields a maximum of P independent equations. Hence, it
is for this reason that Eq. (26) is only applied at selected journals J;. The selection is arbitrary provided that
none of the chosen journals is a node (pivot) in the corresponding rotor’s rigid body modes since it would then
introduce trivial “0 = 0 equations in the corresponding rows of Eq. (26).

Since the total number of unknown Fourier coefficients of the relative displacement at the SFDs
(Egs. (7a)~(7¢)) is 2N x (2K + 1), then from the above it is apparent that if P<2N additional zero-frequency
equations need to be found to supplement Eq. (26).

Let q be the vector of instantaneous modal coordinates, which represent the vibration of the structure in
modal space. Due to the periodicity of the vibration:

K
q=q+ Z{q(c’;)s cos kwt + qg{g sin kwt}. (29)
k=1

Let the mean component vector q be partitioned thus:

- T =T

i=[a 471, (30)
where q is the P x 1 vector of mean modal coordinates associated with the rigid body modes. Hence, the
additional block of zero-frequency equations is given as follows, by splitting the response into rigid and
flexible modal contributions:

V—vs = I:Iv(i + CNVV(O)‘; + CVW(O)W' (31

In Eq. (31), v, is a vector defining the static offsets of the SFD journals relative to their housings, in the x, y
directions, under no rotor loading. Hy is the rigid body modal matrix defined by

Hy =" - ], (32)

C(0), Cy(0) are zero-frequency “incomplete” compliance matrices with the rigid body mode contribution
excluded i.e.:

. R \I,(r)‘l,(r)T
Culw)= > -, (33a)
r=pp1 Pr — @

CNVW((‘U) = 2 2 (33b)
repp1 O O
The block of zero-frequency equations can thus be expressed as follows, for the most general case:
0 | |0pxp|. N Asv(0) | N Ay w(O)w (34)
vov| | YT G |PT ] EnOw

It is observed that an extra P zero-frequency unknowns, contained in q, have been introduced into the system,
in addition to the 2N zero-frequency unknowns in v. However, this is not a problem since there are P+ 2N
equations in Eq. (34). The extra unknowns term q in Eq. (34) either vanishes or is not required for the
following two special cases:

(a) P = 2N — zero-frequency equations “‘fully implicit”: In this case Eq. (31) (i.e. the lower row set of Eq. (34),
and consequently q) is not required. One example of this case would be if each rotor in Fig. 1 had only two
bearings, all of which were unsupported SFDs.

(b) P = 0— zero-frequency equations “fully explicit”: In this case the upper row set of Eq. (34) and Hy are null
and only the lower row set is used. This would occur if each rotor in Fig. 1 had retainer springs at two or
more SFDs.
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The introduction of the extra unknowns term q allows the resolution of the first of the outstanding issues
bulleted in the latter part of the Introduction i.e. the solution of systems involving at least one rotor that is
statically indeterminate with the nonlinear elements in place and either does not have any linear support or has
just one linear point support (as clearly evident for the LP rotor in Fig. 1).

2.4. Solution of the equations

Egs. (24) and (34) together constitute the full set of 2N (2K + 1) + nexira nonlinear algebraic equations in an
equal number of unknowns (where nen = P, except for the special cases (a) and (b) in previous section where
Hextra = 0). Collecting the unknowns into one vector

T
z=[q V' VS))ST viilr)‘T .. .v(cfs)T viﬁ)T]T (35)
and moving all terms of Egs. (24) and (34) to the left-hand side, the system of equations can be expressed as
1z, 2, 0) =0, (36)

where y is a nonlinear vector function of z, Q; ) and Q. This is due to the fact that, for given Q; ,, O (Eq. (1))

and an assumed z, all terms in Eqs. (24) and (34) are fully determined. In particular, the terms p, p%*) pg‘g are

cos?
calculated as indicated in the flow chart of Fig. 3.

Hence, for given €, and Q the Eq. (36) can be solved for z by iteration. Eq. (36) can be solved over a
range of Q) for given Q to yield a set of solutions defining a ““speed response curve”. In the case of MFU, a
fixed Q implies that the ratio of the speeds of the rotors is kept fixed as the speed €; ) is varied. The
continuation technique used to advance the solution procedure along the curve uses a predictor-corrector
approach [6] where the initial approximation (or ““predictor”) z, for the solution z at a point on the curve is
obtained from the previous points. Eq. (36) is then solved by the damped Newton—Raphson method (the
“corrector’’) [10]. The initial approximation for the first point on the curve is furnished by the Fourier
coefficients of a time-marching solution.

At each point on the speed response, the Newton—Raphson method requires the calculation of the Jacobian
matrix 0y/0z|,—,,, which is then inverted. As z iterates towards its correct value the inverse of the Jacobian is
efficiently updated using Broyden’s Method [10]. In view of the large number of unknowns and the process of
Fig. 3 (which is applied as many times as necessary during the iterative process), an efficient means of
computing the Jacobian is imperative. From Eqs. (24) and (34) it is clear that the computational burden lies
the evaluation of the matrices 0p/dz, dp{X) /0z, apg‘g /0z. Appendix A gives a method to assemble these matrices
efficiently from the partial derivatives of the Fourier coefficients of the forces at each SFD no. i with respect to
the Fourier coefficients of its own relative displacements.

Wyl k=1.K,i=1.N

icos? Visin?

v

From eq. (3) and its time derivative construct an
ny -point time history of each v, v,, i=1..N

v

From the physical model of the SFD, evaluate the
n-point time history of each p,(v;,v,), i=1..N

v

From egs. (5) evaluate the Fourier coefficients of the
SFD forces and assemble these as in eqs. (8).

From eqs. (35), (7), extract V,, v

Fig. 3. Calculation of SFD force Fourier coefficients p, p‘clg)s, pg‘n) for assumed z.
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2.5. Recovery of the full set of degrees of freedom

Having solved for z, the definitive values of the Fourier coefficients of the SFD forces and the gyroscopic
moments can be determined (the latter found from Egs. (14a), (14b) and (22)). These enable the computation
of the Fourier coefficients of the vector of modal coordinates q (Eq. (29)). This in turn allows the computation
of the time history of the response at a set of arbitrary degrees of freedom xp since xp = Hpq where Hp is a
matrix of mass-normalised eigenvectors evaluated at the degrees of freedom xp. The Fourier coefficients of q
are found as follows, by considering the modal-space equivalent of Eq. (24):

01 [A-~=n 0 HIpl ] [Hgeld ZJI 5 H,, u)cos -
= — K K + kw, i 9
i 0 (A -z | ) [HIpS | T I | T 20 | Y u
where
A = diag{w?, ..., 0%} (38)

With reference to Eq. (30), the components q were found as part of the solution process of the previous
section. As for the non-rigid components q in Eq. (30), these are given by the equation:

§= A5+ HAyw), (39)
where
A = diag{wp, |, ..., 0%}, (40a)
H, = [0y, (40b)
H, = [y ], (40c)

2.6. Some observations

It is to be noted that concentrated viscous damping forces can be dealt with in a similar manner to the
gyroscopic effect in Section 2.2. Distributed damping of the proportional type [9] in the linear part can also be
accommodated into the above analysis. In this case, the receptance matrix expressions in Egs. (19) are simply
modified by changing their denominator to w? — »” + j2{,ww,, where j = +/—1 and {, is the modal damping
ratio [9]. Hence, in the first term of the right-hand side of Eq. (18), the matrices C,, are replaced by Re{C,,}
and the off-diagonal zero matrices are replaced by Im{C,,}, —Im{C,,}—similarly for the other terms.

Stability analysis is not performed here since available techniques [4,6] are not useful for systems with a
large number of modes. However, a spot check can be performed at an arbitrary solution point on a speed
response by running a time-marching analysis from initial conditions on the particular RHBM solution that is
being tested: if the trajectory remains on the RHBM orbit then it is stable [6]. The initial state variables
q(t = 0), q(z = 0) are obtained through Eqgs. (29) and Eqgs. (37, 39).

3. Simulations

The RHBM was applied to a representative twin-spool aero-engine having the schematic layout in Fig. 1,
using a realistically sized whole-engine FE model provided by an engine manufacturer. This engine-model was
also used in Ref. [1] to test the IRM. In this section, the RHBM results for both SFU and MFU response are
validated against the corresponding IRM results. All simulations were performed in Matlab on a standard
2006—issue desktop pc with Intel® Pentium®™ D CPU 3 GHz processor.
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Fig. 4. Point receptance frequency response at point B in y direction [1].

Table 1
Test cases for RHBM.

Case Low pressure (LP) rotor High pressure (HP) rotor

Uay (kgmm) Uay» (kgmm) Ya)2 U1 (kgmm) U2 (kgmm) Y2
A: SFU 6.3 6.3 0 0 0 0
B: MFU 6.3 6.3 0 5.0 5.0 0

3.1. Linear pre-processing

As indicated in Fig. 2, a one-off eigenvalue analysis was performed on the linear part under non-rotational
conditions. The results of the eigenvalue analysis were used during the course of the subsequent RHBM
process to compute the required receptance matrices (Egs. (19) and (21)). By way of illustration of a typical
receptance function, Fig. 4 is reproduced from Ref. [1]. All 934 modes over the frequency range 0—1 kHz were
included in the subsequent RHBM analysis due to the high shaft speeds and harmonics in the response. As
observed in Ref. [1], the sudden reduction in modal density beyond 500 Hz is merely an artefact of the degree-
of-freedom reduction technique used by the FE modellers.

3.2. Nonlinear computation for the unbalance response

The RHBM was tested for two cases A and B involving SFU and MFU, respectively, as illustrated in
Table 1. In case A the unbalance was restricted to the LP rotor only. For each rotor the unbalance was
concentrated at two locations. Fig. 5 indicates the positions of these locations, as well as the locations of the
SFDs and the distribution of the weights of the two rotors. The gyroscopic effect was discretised at 7 points on
the LP rotor and 12 points on the high-pressure (HP) rotor. For each cases A, B and RHBM speed response
curves were computed for a fixed ratio (2)/Qqy = 1.2 where Q(1), (2 are the LP, HP speeds, respectively. It
should be mentioned that MFU results are affected by the angular position ¢, of the HP rotor relative to the
LP rotor at the reference time 7= 0. For the MFU results presented here ¢, = 0. The influence of this
parameter on the predicted MFU response will be investigated in a separate research work.

For these preliminary calculations, the bearing housings were assumed to be perfectly aligned with each
other prior to rotor assembly (i.e. v = 0 in Eq. (34)). As in Ref. [1], the SFDs considered for this study were
single-land and end-fed with oil of viscosity 0.0049 Nsm™2 at a pressure of 3 bar (gauge). The bearing
diameters and radial clearances were typically 200 and 0.1 mm, respectively, and the land lengths ranged from
16 to 34 mm. Each iteration of the RHBM solution process required the evaluation of the Fourier coefficients
of the SFD forces. As indicated in Fig. 3 this necessitated the generation of an ny—point time history of the
forces p,(v;, v;) at each SFD (where nis a suitable number of points [6]). For each of these points, the forces at
SFD no. i were evaluated by numerical integration of the pressure distribution across the oil film at the
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Fig. 5. Unbalance locations, bearing locations and rotor weight distribution.
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Fig. 6. Periodic steady-state solution obtained using a time-domain approach (IRM): (a) last 50 out of first 100 revolutions; (b) last 50 out
of first 1000 revolutions; and (c) last 50 out of first 3000 revolutions (orbits normalised with respect to corresponding radial clearances).

instantaneous dynamic condition v;, v;, as described in Ref. [1]. An “end-leakage factor” A = 0.03 was used to
account for the sealing at the ends of the dampers [1].

3.2.1. Case A: SFU

In this case, Q) = Q) in Eq. (1) since the LP rotor carried the unbalance. A speed response curve was
constructed for Q = 1 in Eq. (1) and Q(2)/Qy) = 1.2. Eight harmonics of the fundamental frequency ;) were
used (i.e. K = 8). The number of unknowns for each solution point was therefore 174 (including the P = 4
extra unknowns). With reference to the iterative process described in Fig. 3, np = 19 was adequate for the
SFU computations described.

The first solution point on the speed response corresponded to LP, HP rotor speeds of 10,000 and
12,000 rev/min, respectively. For this first point (only), the initial approximation was provided by the Fourier
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Fig. 7. Validation of RHBM (—) against steady-state IRM (---) for the starting solution of the SFU response curve: (a) orbits of the
bearing journals within the radial clearance circles and (b) absolute displacement of the bearing-housing centres (orbits normalised with
respect to the respective radial clearances).
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Fig. 8. SFU speed response curves of y relative displacements at SFDs (vertical axes give half peak—peak amplitude normalised by radial
clearance).



P. Bonello, P. Minh Hai | Journal of Sound and Vibration 324 (2009) 221-242 237

coefficients of the transient time domain solution obtained by the IRM [1]. Fig. 6 shows the IRM solution over
3000 LP shaft revolutions starting from initial conditions corresponding to zero relative displacements and
velocities at each SFD. It is evident that the system dynamics dictated that a time-march through a very large
number of revolutions (up to 4000) was necessary to reach complete steady-state (regardless of the type of time
domain solver used). However, for the purpose of generating the RHBM approximation, the solution over the
first 100 LP shaft revolutions (i.e. Fig. 6a) was sufficient: this took about 20min to generate. Using this
transient approximation, the RHBM took 5s to converge to the steady-state periodic solution shown in Fig. 7.
It is also noted that the RHBM also converged successfully in around the same time using a transient
approximation generated in considerably less than 20 min by using cruder numerical accuracy (tolerance)
settings for the IRM solver. Fig. 7 shows the excellent agreement between the RHBM and the steady-state
IRM solution. This figure also shows the absolute vibration of the bearing housings which, in the case of
RHBM, was recovered by the method described in Section 2.5.

Having generated this first RHBM solution point, a speed response curve was constructed as described in
Section 2.4. This is expressed in Fig. 8 as a set of graphs showing the variation with LP shaft speed of the half-
peak-to-peak amplitude of the relative y displacement at each SFD. The steady-state IRM results at discrete
speeds are overlaid on the same axes and show excellent correlation with the RHBM.

3.2.2. Case B: MFU
In this case, Q) = Q) in Eq. (1) since it is the slower shaft. Since Q;)/Q1) = 1.2 = 6/5, the value of Q in
Eq. (1) was taken to be 5. Thirty-three harmonics of the fundamental frequency €1)/5 were used (i.e. K = 33),
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Fig. 9. Validation of RHBM (—) against steady-state IRM (---) for the starting solution of the MFU response curve: (a) orbits of the
bearing journals within the radial clearance circles and (b) absolute displacement of the bearing-housing centres (orbits normalised with
respect to the respective radial clearances).
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resulting in 674 unknowns for each solution point. With reference to the iterative process described in Fig. 3,
the value of ny had to be increased to 69.

As for the SFU case, the first solution point on the speed response corresponded to LP, HP rotor speeds of
10,000 and 12,000 rev/min, respectively. The initial approximation to this point was again provided by the
Fourier coefficients of the transient IRM solution over the first 100 LP shaft revolutions. This approximation
took roughly 20 min to produce and, using this, the RHBM took 50s to converge to the steady-state periodic
solution shown in Fig. 9. This figure shows the excellent agreement between the RHBM solution and the
steady-state IRM solution (achieved after a total of 4000 LP shaft revolutions).

From this first RHBM solution point, the speed response curve of RHBM solutions depicted in Fig. 10
was generated. Excellent correlation is again seen between the RHBM and the discrete IRM results plotted in
Fig. 10.

3.2.3. Discussion

It is to be noted that, as indicated in Fig. 1, SFDs 1 and 3 were spring-supported and the orbit offsets within
the clearances of these SFDs were mainly due to the respective rotor weights (see Fig. 7a). The rest of the
SFDs, particularly SFDs 4 and 5, relied on the relative vibration (between their journal and housing) to
generate a lifted mean position within their clearances. Hence, it is the prediction of the response at these
unsupported SFDs that posed the major computational challenge for the iterative process, particularly in the
presence of a large number of harmonics.

Fig. 11 shows the development of the harmonic content of the RHBM SFU speed response at one of the
unsupported SFDs. This figure refers to the relative y displacement (mean removed) and velocity, the latter
being included since the SFD force is a function of both relative displacement and velocity. This spectrum
simply features the LP-synchronous frequency (““1LP”") and its harmonics: the HP-synchronous frequency is
absent since there is no HP unbalance. It is also evident that an adequate number of harmonics has to be
retained due to their prominence in the velocity spectrum.

Fig. 12 shows the development of the harmonic content of the RHBM MFU speed response at one of the
unsupported SFDs. This spectrum features both LP- and HP-synchronous components, along with non-
synchronous frequencies which are multiples of €;y/5. It is evident that the sub-synchronous harmonics are
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Fig. 10. MFU speed response curves of y relative displacements at SFDs (vertical axes give half peak—peak amplitude normalised by radial
clearance).
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Fig. 13. Point-to-point computation time in generating the RHBM speed response curves using a rudimentary speed-control continuation
process: (a) case A: SFU and (b) case B: MFU.

prominent in the relative displacement signals whereas the super-synchronous signals are prominent in the
relative velocity signals.

Fig. 13 shows the variation of the computation time per solution point for both SFU and MFU speed
response curves. The typical solution times per point for the two cases were 5 and 50, respectively. The total
(cumulative) times to generate the speed response curve for the two cases were 85 and 550 min, respectively.
However, these total times can be significantly cut through improvement of the algorithms used for the
continuation procedure. Such numerical issues are outside the scope of this paper. Suffice to say that the
continuation procedure used here was a rudimentary one in which the LP-speed was the control parameter
and the solution at a prescribed speed-step was solved using the solution at the previous step as the predictor.
When the iteration showed signs of divergence, it automatically restarted with a reduced step-size as many
times as necessary until the solution converged. The spikes in Fig. 13 indicate that a large portion of the total
time was taken up by a few very narrow regions where the process struggled to advance the solution. It is likely
that a switch to arc-length continuation [6] in these regions would significantly reduce the number of failed
attempts, thereby cutting the total computation time.

Finally, it should be emphasised that the RHBM is highly useful even in the absence of a continuation
procedure. As illustrated in Section 3.2.1, “unfinished” time-domain solutions at a number of discrete speeds,
each generated with crude tolerance settings over a small number of revolutions can each be “finished off”” and
refined to steady-state in a matter of seconds using the RHBM. This of course is conditional on the time-
domain solution being indeed periodic in the steady-state, as in all the results presented here. As observed in
Ref. [1], reducing the degree of sealing from 4 = 0.03 (as used in the present paper) to a very low level
(4 = 0.01), all other parameters being kept the same, resulted in a steady-state quasi-periodic response which
could only be computed by a time-domain technique, as discussed in the Introduction.
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4. Conclusions

In this paper, a whole-engine RHBM has been devised that, for the first time, has allowed the frequency
domain computation of the steady-state periodic unbalance vibration of a whole aero-engine model with
nonlinear bearings. The method uses the receptance functions of the linear part of the structure under non-
rotational conditions, obtained from a one-off eigenvalue analysis, to set up the equations for the rotating
nonlinear assembly. The unknowns solved for are the Fourier coefficients of the relative displacements at the
nonlinear bearings plus a few extra unknowns. These latter unknowns enable solution of the problem in the
presence of statically indeterminate rotors that have just one linear point support or none at all. Simulation
tests were performed on a realistically sized representative twin-spool engine with rotors running at different
speeds for both SFU (unbalance distribution confined to one rotor) and MFU (unbalance on both rotors). In
either case, excellent correlation with time-marching results was obtained. For the cases studied, the
computation time for MFU was about 10 times greater than SFU due to the larger number of harmonics
necessary to describe the solution. However, for either case, it has been demonstrated that, when used in
conjunction with a time-marching solver like the recently developed IRM, the RHBM is a very powerful tool
that should greatly facilitate the hitherto highly restricted nonlinear dynamic analysis of realistic engine
structures.
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Appendix A. Assembly of the matrices 0p/0z, opk) /0z, op!t) /oz

sin

For each SFD no. i, i = 1... N, calculate the partial derivatives:

[P ] [P ] [P ]
1 1 1
P} cos P} cos Pl cos
(1) 1 (@)
0 pi sin 0 pi sin 0 pi sin
Vi . avi cos . avi sin :
K K (K
PE C())S PE cls pi czxs
(K) (K) (K)
_pisin_ _pisin_ _pisin_
Now
op op Op Op op op
~ — 02N><) extra A ce. 5 (42)
0z [ ooy av(cl))s 6V£i11,)1 av(cfs) GV;I?
where
op op; Opy
— = blkdi R 43¢
ov ’ag{av'l By (432)
op op op
P = blkdiagd 1. PV 4 (43b)
m) (m) av(m)
cos 1 cos N cos

d op op
—p=blkdiag{ LU ) } m=1...K. (43¢)

) (m) 2"y

sin 1 sin N sin
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Fork=1...K:
L S PN < A L o o (44)
- X Hextra = st ’
oz o7 ol o v oy
where for each k:
p®) 2o 2o
Peos _ pikdiag] Dleos | PN cos (45a)
ov oV, vy
op) 2o G
Peos — bikdiag) Pleos . PN cos (45b)
aVCOS 6vl cos avN cos
dp® d (k) dp®
cos — plkdiag] Ciees | PNeos L= K (45c)
avsin 1 sin avN sin

For apgg /0z, replace the subscript “‘cos” by “‘sin” in the numerators of the partial derivative expressions of
Eqgs. (44) and (49).
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