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Abstract

Current frequency-domain techniques for the rapid computation of the steady-state periodic vibration of unbalanced

rotordynamic systems with nonlinear bearings are not suitable for realistic engine structures like aero-engine assemblies. In

this paper, a whole-engine receptance harmonic balance method (RHBM) is devised that, for the first time, allows the

frequency domain analysis of such a structure. The method uses the receptance functions of the linear part of the structure

under non-rotational conditions, obtained from a one-off eigenvalue analysis, to set up the equations for the rotating

nonlinear assembly. The unknowns solved for are the Fourier coefficients of the relative displacements at the nonlinear

bearings plus a few extra unknowns. These latter unknowns enable solution of the problem in the presence of statically

indeterminate rotors that have just one linear point support or none at all. Simulation tests on a realistically sized

representative twin-spool engine showed excellent correlation with time-marching results obtained from the recently

developed impulsive receptance method (IRM). It is demonstrated that, when used in conjunction with a time-marching

solver like the IRM, the RHBM is a very powerful tool that should greatly facilitate the hitherto highly restricted nonlinear

dynamic analysis of realistic engine structures.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Aero-engine assemblies are complex structures typically involving at least two nested rotors mounted within
a flexible casing via squeeze-film damper (SFD) bearings. Most SFDs are unsupported, as can be seen in
Fig. 1, where a parallel retainer spring is only used with one SFD at the end of each rotor. As observed in
Ref. [1], the deployment of SFDs into such structures is highly cost-effective but requires careful calculation
since they can be highly nonlinear in their performance.

The solution techniques for the response of a nonlinear system subjected to periodic external excitation (e.g.
rotor unbalance) can be broadly categorised into either time domain or frequency domain techniques. Time
domain (‘‘time-marching’’) techniques march forward in time past the initial transient stage to yield the
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

( )T matrix/vector transpose
[d] d( )/dt

ð Þ; ð ÞðkÞcos; ð Þ
ðkÞ
sin Fourier coefficients of vector ( ), e.g.

Eq. (3)
AJselv ðoÞ;AJselw ðoÞ accelerance matrices, Eqs.

(27a) and (27b)
Bðk$Þ matrix, Eq. (23b)
CJJðoÞ;CvvðoÞ; . . . . . . receptance matrices
C̃vvðoÞ; C̃vwðoÞ ‘‘incomplete’’ receptance ma-

trices, Eqs. (33a) and (33b)
Dðk$Þ;Eðk$Þ;Fðk$Þ matrices, Eqs. (23a) and

(25a)
g ¼ ½gTð1Þ � � � gTðJÞ�

T

g(j) ¼ ½MðjÞ1 NðjÞ1 � � � MðjÞGJ
NðjÞGJ

�T

Gj total number of gyroscopic locations on
rotor no. j

�Hv; H̃v; H̃w ‘‘incomplete’’ modal matrices defined
by Eqs. (32), (40b) and (40c)

i counter for nonlinear bearings
I identity matrix
I ðjÞp polar moment of inertia at gyroscopic

location no. p of rotor no. j

j counter for rotors
J total number of rotors
k counter for harmonics
K maximum of k

L(j) matrix defined by Eq. (25c)
M(j)p, N(j)p gyroscopic moments about x and y

axes, respectively, at gyroscopic location
no. p of rotor no. j

nextra number of extra unknowns ð �̄qÞ
nF number of points of SFD force time

history (Fig. 3)
N number of SFDs
p counter for gyroscopic effect location on

rotor no. j

P total number of rigid body modes
P block diagonal matrix of diagonal sub-

matrices P(j), j ¼ 1yJ

P(j) ¼ OðjÞdiagf�I ðjÞ1; I ðjÞ1; . . . ;�I ðjÞGj
; I ðjÞGj

g

q vector of modal coordinates (Eq. (29))
�̄q; ¯̃q rigid and flexible mode subvectors of q̄

(Eq. (30))
Q positive integer (Eq. (1))
QðjÞðk$Þ matrix defined by Eq. (25c)
r counter for modes
R total number of modes considered

s counter for unbalance location on rotor
no. j

Sj maximum of s

t time (s)
u(j) unbalance excitation vector Eq. (9)
uðjÞ cos; uðjÞ sin component amplitudes of u(j)

Eqs. (10a) and (10b)
U ðjÞs unbalance at location s on rotor no. j

(kgm)
v ¼ xJ � xB ¼ ½v

T
1 � � � vTN �

T

vi ¼ ½xJi
� xBi

yJi
� yBi

�T

vs vector of static Cartesian offsets at
squeeze-film no. i (Eq. (34))

w static loading distribution vector (all
rotors)

x, y, z Cartesian frame, Fig. 1
xBi
; yBi

;xJi
; yJi

instantaneous Cartesian displace-
ments of the journal and housing centres
Ji, Bi at SFD no. i

xJ, xB ¼ ½xJ1 yJ1
� � �xJN

yJN
�T;

½xB1
yB1
� � �xBN

yBN
�T

z vector of unknowns (Eq. (35))
z0 initial approximation for z
aðjÞp;bðjÞp rotational deformation about x, y axes,

respectively, at gyroscopic location no. p

of rotor no. j

gðjÞs angle defined in text (below Eqs. (10a)
and (10b))

dk$;OðjÞ ¼
1; k$ ¼ OðjÞ
0; k$aOðjÞ

(

h ¼ ½hTð1Þ � � � h
T
ðJÞ�

T

h(j) ¼ ½bðjÞ1 aðjÞ1 � � � bðjÞGj
aðjÞGj
�T

K; K̃ diagonal matrices, Eqs. (38) and (40a)
$ fundamental circular frequency of the

RHBM (Eq. (1))
q̄; qðkÞcos; q

ðkÞ
sin vectors of Fourier coefficients of all
SFD forces (Eqs. (8a)–(8c))

qi ¼ ½Qxi
Qyi
�T (Cartesian forces on journal

at squeeze-film no. i)
fðjÞ angle defined in text (below Eqs. (10a)

and (10b))
v vector function of z, Oðjref Þ and Q (Eq. (36))
wðrÞJ ;w

ðrÞ
B mass-normalised eigenvectors defining
the x and y displacements of the
squeeze-film terminals Ji, Bi in mode no. r

wðrÞv ¼ wðrÞJ � wðrÞB
wðrÞJsel sub-vector of wðrÞJ for selected journals

(Section 2.3)
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wðrÞuðjÞ ;w
ðrÞ
g ;w

ðrÞ
w mass-normalised eigenvectors eval-

uated at degrees of freedom correspond-
ing to directions and locations of
elements in u(j), g, and w

wðrÞh mass-normalised eigenvectors evaluated
at degrees of freedom in h

o generic circular frequency
or natural frequency of mode no. r

O(j) rotational speed of rotor no. j (rad/s)
Oðjref Þ reference unbalanced shaft speed (Eq. (1))

SFD  
(oil film)

dampers

rolling-element 
bearings

1B 2B 3B 4B
5Bcasing 

1J 2J 3J 4J 5J

y

zx
( )1,2Ω

engine mounting retainer
springs 

HP rotor 

LP rotor 

Fig. 1. Schematic of a representative twin-spool engine (abbreviations ‘‘LP’’ and ‘‘HP’’ stand for ‘‘low pressure’’ and ‘‘high pressure’’

respectively).
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steady-state response, which may not necessarily be periodic. Frequency domain (‘‘periodic solution’’)
techniques, which employ analytical methods like harmonic balance [2–4] or trigonometric collocation [5], are
inherently very much faster since they directly yield steady-state solutions that are assumed to be periodic at
an assumed fundamental frequency. However, such periodic vibration may not always be physically possible,
in which case the computed periodic solutions represent a dynamic state that is unstable to the slightest
physical perturbation. Time-marching is then used to obtain the actual (stable) vibration. An efficient
computational facility takes advantage of the relative merits of both categories through an integrated
approach that makes effective use of both [6]. This paper will focus on the frequency domain approach.

The direct study of real engine structures has been hindered by the fact that the various frequency-domain
techniques proposed for the computation of the unbalance vibration are not suitable for complex systems.
Indeed, such methods are almost invariably illustrated on simple rotor-bearing systems e.g. Refs. [2–7].
Moreover, commercial finite-element (FE) codes do not possess a frequency domain solver for nonlinear
whole-engine modelling.

The common strategy of all proposed frequency domain techniques for the analysis of rotating systems with
concentrated nonlinearities like fluid bearings is to consider the forces from these elements as external to the
remaining linear part. What is ultimately solved is a set of nonlinear algebraic equations whose unknowns are
the Fourier coefficients of the degrees of freedom at the nonlinearities only. The difference between the various
frequency domain techniques lies mainly in the way these equations are generated. Such techniques can then
be classified as follows: (a) transfer matrix approach e.g. Ref. [2]; (b) direct FE approach e.g. Refs. [3,4];
(c) direct modal approach [5]; and (d) receptance harmonic balance approach [6,7]. The transfer matrix
approach is not suited for modelling complex sub-systems such as the engine casing. The direct FE approach
applies the harmonic balance or trigonometric collocation method to the full FE equations of the system. A
condensation technique, involving the inversion of large matrices, can then be applied to reduce the number of
unknowns to those associated only with the nonlinear degrees of freedom. Such a process is not feasible for a
whole-engine model. As stated in Ref. [5], approach (c) is more tractable to large systems since it uses
component mode synthesis. However, this requires the prior solution of the eigenproblem of the rotating linear
part and modal truncation. The latter has been shown in Ref. [1] to be a problem with a real engine due to a
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high modal density at relatively low frequencies. Moreover, gyroscopic effects would necessitate the solution
of the eigenproblem for each speed.

The receptance harmonic balance method (RHBM), as presented in Refs. [6,7], shows great potential for the
analysis of complex structures. The nonlinear algebraic equations are yielded without the need of any costly
condensation, by applying the force–displacement relationships for each harmonic of the vibration using the
frequency response functions (receptances) of the linear part. There is no problem with modal truncation since
any desired number of modes can be included in the receptance expressions. This concept was first introduced
by Ren and Beards [8] for a simple non-rotating structure. The RHBM was adapted by Bonello et al. [6,7] for
a rotating system comprising a single shaft with negligible gyroscopic effect running on nonlinear bearings
housed within a flexible support structure. Among the issues considered in Refs. [6,7] was the question of how
to derive the equations for the zero-frequency harmonic (i.e. the mean component of the vibration) when the
presence of rigid body modes of the linear part cause the relevant receptance functions to be undefined at zero-
frequency. Two common examples of this case are: a rotor pivoted at one end by a self-aligning rolling-
element bearing and running on an unsupported SFD at the other end [6]; or a rotor running only on two
unsupported SFDs [7]. The linear part of the system then comprises a pinned-free rotor in the former case, and
a free–free rotor in the latter case. The solution provided in Refs. [6,7] was to consider the fact that the mean
components of both velocity and acceleration of the vibration of the nonlinear system are zero. Hence, at zero-
frequency such a rotor is in a state of ‘‘pseudo-static’’ equilibrium under the action of the static external forces
and the mean SFD forces. The term ‘‘pseudo’’ is used here since the latter forces are themselves generated by
the vibration. The works in Refs. [6,7] then proceeded to solve for the vibration response of a statically

determinate rotor with unsupported SFDs by including the pseudo-static equilibrium equations with the rest
of the dynamic frequency response equations.

If the work in Refs. [6,7] is to be used as the basis for solving the unbalance response of a whole aero-engine
model the following outstanding issues need to be resolved:
�
 The presence of rotors that introduce rigid body modes in the linear part but are statically indeterminate

when the nonlinear bearings are in place: this is clearly the case for the low-pressure (LP) spool in Fig. 1,
where the rigid body modes define pivoting motion about J1.

�
 Gyroscopic effects: for the receptance approach to be feasible, the receptances should pertain to the linear

part under non-rotational conditions, making them independent of rotational speed, allowing a one-off
analysis of the linear part. Hence, a means has to be found of including gyroscopic effects into the nonlinear
problem without adding to the number of unknowns.

�
 An efficient post-solution recovery of the full set of degrees of freedom.

�
 Unbalance excitation from more than one rotor: for single shaft systems the external excitation (unbalance)

is at a single frequency—single-frequency unbalance (SFU). This also applies for multi-spool systems where
the unbalance distribution is confined to only one of the shafts. Frequency domain techniques have so far
been used only on SFU problems. In practice, the unbalance may be located on more than one rotor and
the unbalanced rotors will turn at different speeds, resulting in multi-frequency unbalance (MFU). It is
clearly desirable for the method to be able to handle MFU conditions.

The work presented in this paper resolves the above-mentioned issues. In addition, it reduces the number of
unknowns by about half that in previous research by formulating the equations in terms of the relative rather
than the absolute degrees of freedom at the nonlinearities. This is possible since the inertia of the fluid films at
the bearings is commonly assumed to be negligible (e.g. Refs. [1–7]—indeed this assumption appears to be
essential in cases where both journal and bearing housing vibrate).

This work is the second stage of a project whose overall aim is to deliver a suite of computational techniques
for unbalance response computation, suitable for generic whole-engine models, which will significantly extend
the capability of current FE packages. The proposed analysis of the nonlinear rotating assembly uses the
modal parameters of the undamped linear part of the assembly under non-rotating conditions (see Fig. 2).
Nastrans is used for the linear pre-processing and specially written Matlabs routines for the subsequent
nonlinear computation which has both time domain and frequency domain options. The first stage of the
project has produced a novel fast time domain technique called the impulsive receptance method (IRM) [1].
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Eigenvalue analysis

Nonlinear computation (MATLAB): 
nonlinear rotating assembly 

FE model 

Pre-processing (NASTRAN):
linear undamped part (no rotation)

Frequency domain: 
RHBM

Time domain: IRM 

Stability analysis

Fig. 2. Overall computational procedure.
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The present paper deals with the development of a whole-engine RHBM. The development of a fast stability-
check routine for the RHBM solutions will be the subject of a separate paper.

The theory of whole-engine RHBM is presented in the following section. In Section 3 the method is tested
on a realistically sized representative twin-spool aero-engine model and validated against the IRM.

2. Theory

2.1. System description

The modal parameters in all the theory pertain to the linear part of the assembly under non-rotating
conditions. By ‘‘linear part’’ is meant the structure that remains in Fig. 1 when the SFDs are replaced by gaps.
The damping in the linear part of an engine is commonly regarded as negligible [6]. The linear part is acted on
by the SFD forces, unbalance forces, static loading on the rotors, and the gyroscopic moments on the rotors.
The engine is assumed to have J rotors each with speeds OðjÞ, j ¼ 1 . . . J.
In the RHBM, the vibration is assumed to be periodic with a fundamental frequency of $ where

$ ¼ Oðjref Þ=Q. (1)

Q is a positive integer and Oðjref Þ is termed the ‘‘reference unbalanced shaft speed’’. In the case of SFU, Oðjref Þ is
the speed of the (only) unbalanced shaft and Q is commonly taken as 1. In the case of MFU, Oðjref Þ is the speed
of the slowest unbalanced shaft and the value of Q will be chosen according to the ratio of the speeds of the
unbalanced shafts (Section 3.2.2).

Let xJi
, yJi

and xBi
, yBi

be the instantaneous Cartesian displacements of the journal and housing centres Ji, Bi

at SFD no. i, both measured from the static equilibrium position of Bi under no rotor loading. Hence, if
xJ ¼ ½xJ1 yJ1

� � � xJN
yJN
�T, xB ¼ ½xB1

yB1
� � � xBN

yBN
�T, then:

xJ ¼ x̄J þ
XK

k¼1

fx
ðkÞ
J cos cos k$tþ x

ðkÞ
J sin sin k$tg, (2a)

xB ¼ x̄B þ
XK

k¼1

fx
ðkÞ
B cos cos k$tþ x

ðkÞ
B sin sin k$tg. (2b)

Let qi ¼ ½Qxi
Qyi
�T define the Cartesian forces on the journal Ji of SFD no. i, i ¼ 1 . . .N. The forces on the

corresponding bearing housing Bi are hence given by �qi. Now qi ¼ qiðvi; _viÞ where vi ¼ ½xJi
� xBi

yJi
� yBi

�T

and qi ¼ qiðvi; _viÞ is calculated from the physical model of the SFD [1,6]. Hence,

vi ¼ v̄i þ
XK

k¼1

fv
ðkÞ
i cos cos k$tþ v

ðkÞ
i sin sin k$tg, (3)

qi ¼ q̄i þ
XK

k¼1

fqðkÞi cos cos k$tþ qðkÞi sin sin k$tg, (4)
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where

q̄iðvi; v
ð1Þ
i cos; v

ð1Þ
i sin; . . . ; v

ðKÞ
i cos; v

ðKÞ
i sinÞ ¼ ð$=ð2pÞÞ

Z 2p=$

0

qiðvi; _viÞdt, (5a)

qðkÞi cosðvi; v
ð1Þ
i cos; v

ð1Þ
i sin; . . . ; v

ðKÞ
i cos; v

ðKÞ
i sinÞ ¼ ð$=pÞ

Z 2p=$

0

qiðvi; _viÞ cos k$tdt, (5b)

qðkÞi sinðvi; v
ð1Þ
i cos; v

ð1Þ
i sin; . . . ; v

ðKÞ
i cos; v

ðKÞ
i sinÞ ¼ ð$=pÞ

Z 2p=$

0

qiðvi; _viÞ sin k$tdt. (5c)

Hence, if

v ¼ xJ � xB ¼

v1

..

.

vN

2
664

3
775, (6)

v̄ ¼

v̄1

..

.

v̄N

2
664

3
775, (7a)

vðkÞcos ¼

v
ðkÞ
1 cos

..

.

v
ðkÞ
N cos

2
6664

3
7775, (7b)

v
ðkÞ
sin ¼

v
ðkÞ
1 sin

..

.

v
ðkÞ
N sin

2
6664

3
7775 (7c)

then:

q̄ ¼

q̄1

..

.

q̄N

2
664

3
775 ¼ q̄ðv; vð1Þcos; v

ð1Þ
sin; . . . ; v

ðKÞ
cos ; v

ðKÞ
sin Þ, (8a)

qðkÞcos ¼

qðkÞ1 cos

..

.

qðkÞN cos

2
6664

3
7775 ¼ qðkÞcosðv̄; v

ð1Þ
cos; v

ð1Þ
sin; . . . ; v

ð1Þ
cos; v

ð1Þ
sinÞ, (8b)

qðkÞsin ¼

qðkÞ1 sin

..

.

qðkÞN sin

2
6664

3
7775 ¼ qðkÞsinðv̄; v

ð1Þ
cos; v

ð1Þ
sin; . . . ; v

ðKÞ
cos ; v

ðKÞ
sin Þ. (8c)
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For the jth rotor the unbalances U ðjÞ1; . . .U ðjÞSj
are concentrated at Sj points. The vector of unbalance

excitations on rotor no. j can be written as

uðjÞ ¼ uðjÞ cos cos OðjÞtþ uðjÞ sin sin OðjÞt, (9)

where

uðjÞ cos ¼ O2
ðjÞ

U ðjÞ1 sinðfðjÞ þ gðjÞ1Þ

�U ðjÞ1 cosðfðjÞ þ gðjÞ1Þ

..

.

U ðjÞSj
sinðfðjÞ þ gðjÞSj

Þ

�U ðjÞSj
cosðfðjÞ þ gðjÞSj

Þ

2
666666664

3
777777775
, (10a)

uðjÞ sin ¼ O2
jð Þ

U ðjÞ1 cosðfðjÞ þ gðjÞ1Þ

U ðjÞ1 sinðfðjÞ þ gðjÞ1Þ

..

.

U ðjÞSj
cosðfðjÞ þ gðjÞSj

Þ

U ðjÞSj
sinðfðjÞ þ gðjÞSj

Þ

2
666666664

3
777777775
. (10b)

gðjÞs, s ¼ 1 . . .Sj , is the angular position of the unbalance at location no. s of rotor no. j relative to the angular
position of unbalance no. 1 on the same rotor (gðjÞ1 ¼ 0 for all j). fðjÞ is the angular position of unbalance no. 1
on rotor no. j relative to the angular position of unbalance no. 1 on rotor no. 1 at the instant t ¼ 0 (fð1Þ ¼ 0). It
is to be noted that, for a given unbalance distribution on the engine, the values of gðj;sÞ are fixed but the values
of fðjÞ (j ¼ 2; 3 . . .) are arbitrary since the angular positions of the rotors relative to each other at the reference
time t ¼ 0 are arbitrary.

For the jth rotor the gyroscopic effects are concentrated at Gj points. Let g be the vector containing the
gyroscopic moments on all the rotors. Hence:

g ¼ P_h, (11)

where g, P, and the vector h of flexural rotations at the gyroscopic locations are defined in the Nomenclature.
Due to the periodicity of the vibration and as a result of Eq. (11), one can write:

h ¼ h̄þ
XK

k¼1

fhðkÞcos cos k$tþ hðkÞsin sin k$tg, (12)

g ¼
XK

k¼1

fgðkÞcos cos k$tþ g
ðkÞ
sin sin k$tg; (13)

where

gðkÞcos ¼ k$PhðkÞsin, (14a)

g
ðkÞ
sin ¼ �k$PhðkÞcos. (14b)
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2.2. Derivation of the block of dynamic equations

For each harmonic k$, k ¼ 1 . . .K , of the response at the SFDs (Eqs. (2a) and (2b)) one can write the
following force–displacement relationships:

x
ðkÞ
J cos

x
ðkÞ
J sin

2
4

3
5 ¼ CJJðk$Þ 0

0 CJJðk$Þ

" #
qðkÞcos

qðKÞsin

2
4

3
5þ CJBðk$Þ 0

0 CJBðk$Þ

" #
�qðKÞcos

�qðKÞsin

2
4

3
5

þ

CJgðk$Þ 0

0 CJgðk$Þ

" #
gðkÞcos

g
ðkÞ
sin

2
4

3
5þXJ

j¼1

dk$;OðjÞ

CJuðjÞ ðk$Þ 0

0 CJuðjÞ ðk$Þ

" #
uðjÞ cos

uðjÞ sin

" #
; k ¼ 1 . . .K ,

(15a)

x
ðkÞ
B cos

x
ðkÞ
B sin

2
4

3
5 ¼ CBJðk$Þ 0

0 CBJ k$ð Þ

" #
qðkÞcos

qðkÞsin

2
4

3
5þ CBBðk$Þ 0

0 CBBðk$Þ

" #
�qðkÞcos

�qðkÞsin

2
4

3
5

þ

CBgðk$Þ 0

0 CBg k$ð Þ

" #
gðkÞcos

g
ðkÞ
sin

2
4

3
5þXJ

j¼1

dk$;O jð Þ

CBuðjÞ ðk$Þ 0

0 CBuðjÞ ðk$Þ

" #
uðjÞ cos

uðjÞ sin

" #
; k ¼ 1 . . .K .

(15b)

In above equations, the receptance (or ‘‘compliance’’) matrices are defined from modal theory [9] as

CJJðoÞ ¼
XR

r¼1

wðrÞJ wðrÞTJ

o2
r � o2

, (16a)

CJBðoÞ ¼ CBJðoÞ ¼
XR

r¼1

wðrÞJ wðrÞTB

o2
r � o2

, (16b)

CJgðoÞ ¼
XR

r¼1

wðrÞJ wðrÞTg

o2
r � o2

, (16c)

CJuðjÞ ðoÞ ¼
XR

r¼1

wðrÞJ wðrÞTuðjÞ

o2
r � o2

, (16d)

CBBðoÞ ¼
XR

r¼1

wðrÞB wðrÞTB

o2
r � o2

, (16e)

CBgðoÞ ¼
XR

r¼1

wðrÞB wðrÞTg

o2
r � o2

, (16f)

CBuðjÞ ðoÞ ¼
XR

r¼1

wðrÞB wðrÞTuðjÞ

o2
r � o2

. (16g)

In the above expressions, or (r ¼ 1 . . .R) are the undamped natural frequencies of the linear part. wðrÞJ , wðrÞB are
the mass-normalised eigenvectors defining the x, y displacements of the squeeze-film terminals Ji, Bi in mode
no. r. Similarly, wðrÞuðjÞ , wðrÞg are mass-normalised eigenvectors taken at the degrees of freedom corresponding to
the directions and locations of the elements of u(j) and g, respectively. Defining

wðrÞv ¼ wðrÞJ � cðrÞB . (17)
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Subtracting Eq. (15b) from Eq. (15a), and using relations (16a)–(16g) one obtains:

vðkÞcos

v
ðkÞ
sin

2
4

3
5 ¼ Cvvðk$Þ 0

0 Cvvðk$Þ

" #
qðkÞcos

qðkÞsin

2
4

3
5þ Cvgðk$Þ 0

0 Cvgðk$Þ

" #
gðkÞcos

g
ðkÞ
sin

2
4

3
5

þ
XJ

j¼1

dk$;OðjÞ

CvuðjÞ ðk$Þ 0

0 CvuðjÞ ðk$Þ

" #
uðjÞ cos

uðjÞ sin

" #
; k ¼ 1 . . .K , (18)

where

CvvðoÞ ¼
XR

r¼1

wðrÞv wðrÞTv

o2
r � o2

; (19a)

CvgðoÞ ¼
XR

r¼1

wðrÞv wðrÞTg

o2
r � o2

, (19b)

CvuðjÞ ðoÞ ¼
XR

r¼1

wðrÞv wðrÞTuðjÞ

o2
r � o2

. (19c)

The above matrices can be regarded compliance matrices relating the relative responses at the SFD terminals
to the various excitations.

The gyroscopic terms gðkÞcos, g
ðkÞ
sin can be eliminated from the right-hand side of Eq. (18) as follows. By analogy

with Eq. (18), one can write a force–displacement relationship for each harmonic k$ of the flexural angular
displacement h at the gyroscopic locations:

hðkÞcos

hðkÞsin

2
4

3
5 ¼ Chvðk$Þ 0

0 Chvðk$Þ

" #
qðkÞcos

qðkÞsin

2
4

3
5þ Chgðk$Þ 0

0 Chgðk$Þ

" #
gðkÞcos

g
ðkÞ
sin

2
4

3
5

þ
XJ

j¼1

dk$;OðjÞ

ChuðjÞ ðk$Þ 0

0 Chu jð Þ
ðk$Þ

" #
uðjÞ cos

uðjÞ sin

" #
, (20)

where

Chvðk$Þ ¼
XR

r¼1

wðrÞh wðrÞTv

o2
r � o2

, (21a)

Chgðk$Þ ¼
XR

r¼1

wðrÞh wðrÞTg

o2
r � o2

; (21b)

ChuðjÞ ðk$Þ ¼
XR

r¼1

wðrÞh wðrÞTuðjÞ

o2
r � o2

. (21c)

ywðrÞh being mass-normalised eigenvectors taken at the degrees of freedom corresponding to the elements in h.
Substituting for gðkÞcos, g

ðkÞ
sin from Eqs. (14a) and (14b) into Eq. (20) and solving the resulting equations for hðkÞcos,

hðkÞsin one obtains

hðkÞsin

hðkÞcos

2
4

3
5 ¼ �Dðk$ÞBðk$ÞChvðk$Þ Dðk$ÞChvðk$Þ

Dðk$ÞChvðk$Þ Dðk$ÞBðk$ÞChvðk$Þ

" #
qðkÞcos

qðkÞsin

2
4

3
5

þ
XJ

j¼1

dk$;OðjÞ

�Dðk$ÞBðk$ÞChu jð Þ
ðk$Þ Dðk$ÞChu jð Þ

ðk$Þ

Dk$Chu jð Þ
ðk$Þ Dðk$ÞBðk$ÞChu jð Þ

ðk$Þ

" #
uðjÞ cos

uðjÞ sin

" #
, (22)
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where

Dðk$Þ ¼ ðIþ Bðk$Þ2Þ�1, (23a)

Bðk$Þ ¼ k$Chgðk$ÞP. (23b)

Hence, from Eqs. (14a) and (14b) and Eq. (22), one can eliminate gðkÞcos, g
ðkÞ
sin from Eq. (18):

vðkÞcos

v
ðkÞ
sin

2
4

3
5 ¼ Cvvðk$Þ � Eðk$Þ Fðk$Þ

�Fðk$Þ Cvvðk$Þ � Eðk$Þ

" #
qðkÞcos

qðkÞsin

2
4

3
5

þ
XJ

j¼1

dk$;OðjÞ

Cvu jð Þ
ðk$Þ � LðjÞðk$Þ QðjÞðk$Þ

�QðjÞðk$Þ CvuðjÞ ðk$Þ � LðjÞðk$Þ

" #
uðjÞ cos

uðjÞ sin

" #
; k ¼ 1 . . .K , (24)

where

Eðk$Þ ¼ k$Cvgðk$ÞPDðk$ÞBðk$ÞChvðk$Þ, (25a)

Fðk$Þ ¼ k$Cvgðk$ÞPDðk$ÞChvðk$Þ, (25b)

LðjÞðk$Þ ¼ k$Cvgðk$ÞPDðk$ÞBðk$ÞChuðjÞ ðk$Þ, (25c)

QðjÞðk$Þ ¼ k$Cvgðk$ÞPDðk$ÞChuðjÞ ðk$Þ. (25d)

Eq. (24) constitute the dynamic block of the RHBM equations. By consideration of the relationships in
Eqs. (8a)–(8c), it is clear that Eqs. (24) constitute a set of 2N � 2K equations in 2N � ð2K þ 1Þ unknowns
(which are the Fourier coefficients of the relative displacements at the SFDs, Eqs. (7a)–(7c)). A block of
‘‘pseudo-static’’ equations (defining force–response relations at zero-frequency) will complete the equation set.

2.3. Derivation of the block of pseudo-static equations

As can be seen from Eq. (19a), the presence of rigid body modes (for which or ¼ 0) in the linear part, would
result in the receptance matrix Cvvð0Þ ! �1. Note that the rigid body modes define rigid body motion of one
or more rotors in the xz or yz planes (the superfluous modes defining rigid body spin of each rotor about its
axis are removed). As discussed in the Introduction, q̄ and the static loading w are in equilibrium. This
principle can be applied in a systematic fashion by writing zero-frequency force–acceleration response
equations at selected journals Ji as follows:

0 ¼ AJselvð0Þq̄þ AJselwð0Þw, (26)

where the accelerance matrices are defined as

AJselvðoÞ ¼
XR

r¼1

�o2
wðrÞJselw

ðrÞT
v

o2
r � o2

, (27a)

AJselwðoÞ ¼
XR

r¼1

�o2
wðrÞJselw

ðrÞT
w

o2
r � o2

. (27b)

wðrÞJsel are the mass-normalised eigenvectors defining the x, y displacements at the selected journals Ji. If the
linear part has a total of P rigid body modes i.e. o1 . . .oP ¼ 0, then:

AJselvð0Þ ¼
XP

r¼1

wðrÞJselw
ðrÞT
v , (28a)

AJselwð0Þ ¼
XP

r¼1

wðrÞJselw
ðrÞT
w . (28b)
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In the case of the engine shown in Fig. 1, P ¼ 4, since each rotor has two rigid body modes: one per plane xz,
yz, defining pivoting motion about J1 or J3. Eqs. (26) effectively define moment equilibrium in each plane
about each pivot. In general, the method of Eq. (26) yields a maximum of P independent equations. Hence, it
is for this reason that Eq. (26) is only applied at selected journals Ji. The selection is arbitrary provided that
none of the chosen journals is a node (pivot) in the corresponding rotor’s rigid body modes since it would then
introduce trivial ‘‘0 ¼ 0’’ equations in the corresponding rows of Eq. (26).

Since the total number of unknown Fourier coefficients of the relative displacement at the SFDs
(Eqs. (7a)–(7c)) is 2N � ð2K þ 1Þ, then from the above it is apparent that if Po2N additional zero-frequency
equations need to be found to supplement Eq. (26).

Let q be the vector of instantaneous modal coordinates, which represent the vibration of the structure in
modal space. Due to the periodicity of the vibration:

q ¼ q̄þ
XK

k¼1

fqðkÞcos cos k$tþ q
ðkÞ
sin sin k$tg. (29)

Let the mean component vector q̄ be partitioned thus:

q̄ ¼ ½ �̄q
T ¯̃q

T
�T, (30)

where �̄q is the P� 1 vector of mean modal coordinates associated with the rigid body modes. Hence, the
additional block of zero-frequency equations is given as follows, by splitting the response into rigid and
flexible modal contributions:

v̄� vs ¼ �Hv �̄qþ C̃vvð0Þq̄þ C̃vwð0Þw. (31)

In Eq. (31), vs is a vector defining the static offsets of the SFD journals relative to their housings, in the x, y

directions, under no rotor loading. �Hv is the rigid body modal matrix defined by

�Hv ¼ ½w
ð1Þ
v � � � wðPÞv �. (32)

C̃vvð0Þ; C̃vwð0Þ are zero-frequency ‘‘incomplete’’ compliance matrices with the rigid body mode contribution
excluded i.e.:

C̃vvðoÞ ¼
XR

r¼Pþ1

wðrÞv wðrÞTv

o2
r � o2

, (33a)

C̃vwðoÞ ¼
XR

r¼Pþ1

wðrÞv wðrÞTw

o2
r � o2

. (33b)

The block of zero-frequency equations can thus be expressed as follows, for the most general case:

0

v̄� vs

" #
¼

0P�P

�Hv

" #
�̄qþ

AJselvð0Þ

C̃vvð0Þ

" #
q̄þ

AJselwð0Þw

C̃vwð0Þw

" #
. (34)

It is observed that an extra P zero-frequency unknowns, contained in �̄q, have been introduced into the system,
in addition to the 2N zero-frequency unknowns in v̄. However, this is not a problem since there are Pþ 2N

equations in Eq. (34). The extra unknowns term �̄q in Eq. (34) either vanishes or is not required for the
following two special cases:
(a)
 P ¼ 2N — zero-frequency equations ‘‘fully implicit’’: In this case Eq. (31) (i.e. the lower row set of Eq. (34),
and consequently �̄q) is not required. One example of this case would be if each rotor in Fig. 1 had only two
bearings, all of which were unsupported SFDs.
(b)
 P ¼ 0 — zero-frequency equations ‘‘fully explicit’’: In this case the upper row set of Eq. (34) and �Hv are null
and only the lower row set is used. This would occur if each rotor in Fig. 1 had retainer springs at two or
more SFDs.
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The introduction of the extra unknowns term �̄q allows the resolution of the first of the outstanding issues
bulleted in the latter part of the Introduction i.e. the solution of systems involving at least one rotor that is
statically indeterminate with the nonlinear elements in place and either does not have any linear support or has
just one linear point support (as clearly evident for the LP rotor in Fig. 1).
2.4. Solution of the equations

Eqs. (24) and (34) together constitute the full set of 2Nð2K þ 1Þ þ nextra nonlinear algebraic equations in an
equal number of unknowns (where nextra ¼ P, except for the special cases (a) and (b) in previous section where
nextra ¼ 0). Collecting the unknowns into one vector

z ¼ ½ �̄q
T

v̄T vð1ÞTcos v
ð1ÞT
sin . . . vðKÞTcos v

ðKÞT
sin �

T (35)

and moving all terms of Eqs. (24) and (34) to the left-hand side, the system of equations can be expressed as

vðz;Oðjref Þ;QÞ ¼ 0, (36)

where v is a nonlinear vector function of z;Oðjref Þ and Q. This is due to the fact that, for given Oðjref Þ, Q (Eq. (1))

and an assumed z, all terms in Eqs. (24) and (34) are fully determined. In particular, the terms q̄, qðkÞcos, qðkÞsin are

calculated as indicated in the flow chart of Fig. 3.
Hence, for given Oðjref Þ and Q the Eq. (36) can be solved for z by iteration. Eq. (36) can be solved over a

range of Oðjref Þ for given Q to yield a set of solutions defining a ‘‘speed response curve’’. In the case of MFU, a
fixed Q implies that the ratio of the speeds of the rotors is kept fixed as the speed Oðjref Þ is varied. The
continuation technique used to advance the solution procedure along the curve uses a predictor-corrector
approach [6] where the initial approximation (or ‘‘predictor’’) z0 for the solution z at a point on the curve is
obtained from the previous points. Eq. (36) is then solved by the damped Newton–Raphson method (the
‘‘corrector’’) [10]. The initial approximation for the first point on the curve is furnished by the Fourier
coefficients of a time-marching solution.

At each point on the speed response, the Newton–Raphson method requires the calculation of the Jacobian
matrix qv=qzjz¼z0 , which is then inverted. As z iterates towards its correct value the inverse of the Jacobian is
efficiently updated using Broyden’s Method [10]. In view of the large number of unknowns and the process of
Fig. 3 (which is applied as many times as necessary during the iterative process), an efficient means of
computing the Jacobian is imperative. From Eqs. (24) and (34) it is clear that the computational burden lies
the evaluation of the matrices qq̄=qz, qqðkÞcos=qz, qq

ðkÞ
sin=qz. Appendix A gives a method to assemble these matrices

efficiently from the partial derivatives of the Fourier coefficients of the forces at each SFD no. i with respect to
the Fourier coefficients of its own relative displacements.
z   

From eqs. (35), (7), extract iv , ( )k
i cosv , ( )k

isinv , Kk . . .1= , Ni

.

. . .1=  

From eq. (3) and its time derivative construct an     

Fn -point time history of each iv , iv , Ni . . .1=  

From the physical model of the SFD, evaluate the 

Fn -point time history of each ( )iii vvρ , , Ni . . .1=  

From eqs. (5) evaluate the Fourier coefficients of the 
SFD forces and assemble these as in eqs. (8). 

.

.

Fig. 3. Calculation of SFD force Fourier coefficients q̄, qðkÞcos, qðkÞsin for assumed z.
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2.5. Recovery of the full set of degrees of freedom

Having solved for z, the definitive values of the Fourier coefficients of the SFD forces and the gyroscopic
moments can be determined (the latter found from Eqs. (14a), (14b) and (22)). These enable the computation
of the Fourier coefficients of the vector of modal coordinates q (Eq. (29)). This in turn allows the computation
of the time history of the response at a set of arbitrary degrees of freedom xP since xP ¼ HPq where HP is a
matrix of mass-normalised eigenvectors evaluated at the degrees of freedom xP. The Fourier coefficients of q
are found as follows, by considering the modal-space equivalent of Eq. (24):

qðkÞcos

q
ðkÞ
sin

" #
¼
ðK� k2$2IÞ�1 0

0 ðK� k2$2IÞ�1

" #
HT

v qðkÞcos

HT
v qðkÞsin

" #
þ

HT
g g
ðkÞ
cos

HT
g g
ðkÞ
sin

2
4

3
5þXJ

j¼1

dk$;OðjÞ

HT
uðjÞ
uðjÞ cos

HT
uðjÞ
uðjÞ sin

2
4

3
5

8<
:

9=
;, (37)

where

K ¼ diagfo2
1; . . . ;o

2
Rg. (38)

With reference to Eq. (30), the components �̄q were found as part of the solution process of the previous
section. As for the non-rigid components ¯̃q in Eq. (30), these are given by the equation:

¯̃q ¼ K̃
�1
fH̃

T

v q̄þ H̃
T

wwg, (39)

where

K̃ ¼ diagfo2
Pþ1; . . . ;o

2
Rg, (40a)

H̃v ¼ ½w
ðPþ1Þ
v . . .wðRÞv �, (40b)

H̃w ¼ ½w
ðPþ1Þ
w . . .wðRÞw �. (40c)
2.6. Some observations

It is to be noted that concentrated viscous damping forces can be dealt with in a similar manner to the
gyroscopic effect in Section 2.2. Distributed damping of the proportional type [9] in the linear part can also be
accommodated into the above analysis. In this case, the receptance matrix expressions in Eqs. (19) are simply

modified by changing their denominator to o2
r � o2 þ j2zroor, where j ¼

ffiffiffiffiffiffiffi
�1
p

and zr is the modal damping

ratio [9]. Hence, in the first term of the right-hand side of Eq. (18), the matrices Cvv are replaced by Re{Cvv}
and the off-diagonal zero matrices are replaced by Im{Cvv}, �Im{Cvv}—similarly for the other terms.

Stability analysis is not performed here since available techniques [4,6] are not useful for systems with a
large number of modes. However, a spot check can be performed at an arbitrary solution point on a speed
response by running a time-marching analysis from initial conditions on the particular RHBM solution that is
being tested: if the trajectory remains on the RHBM orbit then it is stable [6]. The initial state variables
qðt ¼ 0Þ, _qðt ¼ 0Þ are obtained through Eqs. (29) and Eqs. (37, 39).
3. Simulations

The RHBM was applied to a representative twin-spool aero-engine having the schematic layout in Fig. 1,
using a realistically sized whole-engine FE model provided by an engine manufacturer. This engine-model was
also used in Ref. [1] to test the IRM. In this section, the RHBM results for both SFU and MFU response are
validated against the corresponding IRM results. All simulations were performed in Matlab on a standard
2006—issue desktop pc with Intels Pentiums D CPU 3GHz processor.
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Fig. 4. Point receptance frequency response at point B1 in y direction [1].

Table 1

Test cases for RHBM.

Case Low pressure (LP) rotor High pressure (HP) rotor

U(1)1 (kgmm) U(1)2 (kgmm) g(1)2 U(2)1 (kgmm) U(2)2 (kgmm) g(2)2

A: SFU 6.3 6.3 0 0 0 0

B: MFU 6.3 6.3 0 5.0 5.0 0

P. Bonello, P. Minh Hai / Journal of Sound and Vibration 324 (2009) 221–242234
3.1. Linear pre-processing

As indicated in Fig. 2, a one-off eigenvalue analysis was performed on the linear part under non-rotational
conditions. The results of the eigenvalue analysis were used during the course of the subsequent RHBM
process to compute the required receptance matrices (Eqs. (19) and (21)). By way of illustration of a typical
receptance function, Fig. 4 is reproduced from Ref. [1]. All 934 modes over the frequency range 0–1 kHz were
included in the subsequent RHBM analysis due to the high shaft speeds and harmonics in the response. As
observed in Ref. [1], the sudden reduction in modal density beyond 500Hz is merely an artefact of the degree-
of-freedom reduction technique used by the FE modellers.

3.2. Nonlinear computation for the unbalance response

The RHBM was tested for two cases A and B involving SFU and MFU, respectively, as illustrated in
Table 1. In case A the unbalance was restricted to the LP rotor only. For each rotor the unbalance was
concentrated at two locations. Fig. 5 indicates the positions of these locations, as well as the locations of the
SFDs and the distribution of the weights of the two rotors. The gyroscopic effect was discretised at 7 points on
the LP rotor and 12 points on the high-pressure (HP) rotor. For each cases A, B and RHBM speed response
curves were computed for a fixed ratio Oð2Þ=Oð1Þ ¼ 1:2 where Oð1Þ, Oð2Þ are the LP, HP speeds, respectively. It
should be mentioned that MFU results are affected by the angular position fð2Þ of the HP rotor relative to the
LP rotor at the reference time t ¼ 0. For the MFU results presented here fð2Þ ¼ 0. The influence of this
parameter on the predicted MFU response will be investigated in a separate research work.

For these preliminary calculations, the bearing housings were assumed to be perfectly aligned with each
other prior to rotor assembly (i.e. vs ¼ 0 in Eq. (34)). As in Ref. [1], the SFDs considered for this study were
single-land and end-fed with oil of viscosity 0.0049N sm�2 at a pressure of 3 bar (gauge). The bearing
diameters and radial clearances were typically 200 and 0.1mm, respectively, and the land lengths ranged from
16 to 34mm. Each iteration of the RHBM solution process required the evaluation of the Fourier coefficients
of the SFD forces. As indicated in Fig. 3 this necessitated the generation of an nF—point time history of the
forces qiðvi; _viÞ at each SFD (where nF is a suitable number of points [6]). For each of these points, the forces at
SFD no. i were evaluated by numerical integration of the pressure distribution across the oil film at the
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Fig. 6. Periodic steady-state solution obtained using a time-domain approach (IRM): (a) last 50 out of first 100 revolutions; (b) last 50 out

of first 1000 revolutions; and (c) last 50 out of first 3000 revolutions (orbits normalised with respect to corresponding radial clearances).
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instantaneous dynamic condition vi; _vi, as described in Ref. [1]. An ‘‘end-leakage factor’’ l ¼ 0.03 was used to
account for the sealing at the ends of the dampers [1].

3.2.1. Case A: SFU

In this case, Oðjref Þ ¼ Oð1Þ in Eq. (1) since the LP rotor carried the unbalance. A speed response curve was
constructed for Q ¼ 1 in Eq. (1) and Oð2Þ=Oð1Þ ¼ 1:2. Eight harmonics of the fundamental frequency Oð1Þ were
used (i.e. K ¼ 8). The number of unknowns for each solution point was therefore 174 (including the P ¼ 4
extra unknowns). With reference to the iterative process described in Fig. 3, nF ¼ 19 was adequate for the
SFU computations described.

The first solution point on the speed response corresponded to LP, HP rotor speeds of 10,000 and
12,000 rev/min, respectively. For this first point (only), the initial approximation was provided by the Fourier
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Fig. 7. Validation of RHBM (—) against steady-state IRM (- - -) for the starting solution of the SFU response curve: (a) orbits of the

bearing journals within the radial clearance circles and (b) absolute displacement of the bearing-housing centres (orbits normalised with

respect to the respective radial clearances).

Fig. 8. SFU speed response curves of y relative displacements at SFDs (vertical axes give half peak–peak amplitude normalised by radial

clearance).
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coefficients of the transient time domain solution obtained by the IRM [1]. Fig. 6 shows the IRM solution over
3000 LP shaft revolutions starting from initial conditions corresponding to zero relative displacements and
velocities at each SFD. It is evident that the system dynamics dictated that a time-march through a very large
number of revolutions (up to 4000) was necessary to reach complete steady-state (regardless of the type of time
domain solver used). However, for the purpose of generating the RHBM approximation, the solution over the
first 100 LP shaft revolutions (i.e. Fig. 6a) was sufficient: this took about 20min to generate. Using this
transient approximation, the RHBM took 5 s to converge to the steady-state periodic solution shown in Fig. 7.
It is also noted that the RHBM also converged successfully in around the same time using a transient
approximation generated in considerably less than 20min by using cruder numerical accuracy (tolerance)
settings for the IRM solver. Fig. 7 shows the excellent agreement between the RHBM and the steady-state
IRM solution. This figure also shows the absolute vibration of the bearing housings which, in the case of
RHBM, was recovered by the method described in Section 2.5.

Having generated this first RHBM solution point, a speed response curve was constructed as described in
Section 2.4. This is expressed in Fig. 8 as a set of graphs showing the variation with LP shaft speed of the half-
peak-to-peak amplitude of the relative y displacement at each SFD. The steady-state IRM results at discrete
speeds are overlaid on the same axes and show excellent correlation with the RHBM.
3.2.2. Case B: MFU

In this case, Oðjref Þ ¼ Oð1Þ in Eq. (1) since it is the slower shaft. Since Oð2Þ=Oð1Þ ¼ 1:2 ¼ 6=5, the value of Q in
Eq. (1) was taken to be 5. Thirty-three harmonics of the fundamental frequency Oð1Þ=5 were used (i.e. K ¼ 33),
Fig. 9. Validation of RHBM (—) against steady-state IRM (- - -) for the starting solution of the MFU response curve: (a) orbits of the

bearing journals within the radial clearance circles and (b) absolute displacement of the bearing-housing centres (orbits normalised with

respect to the respective radial clearances).
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resulting in 674 unknowns for each solution point. With reference to the iterative process described in Fig. 3,
the value of nF had to be increased to 69.

As for the SFU case, the first solution point on the speed response corresponded to LP, HP rotor speeds of
10,000 and 12,000 rev/min, respectively. The initial approximation to this point was again provided by the
Fourier coefficients of the transient IRM solution over the first 100LP shaft revolutions. This approximation
took roughly 20min to produce and, using this, the RHBM took 50 s to converge to the steady-state periodic
solution shown in Fig. 9. This figure shows the excellent agreement between the RHBM solution and the
steady-state IRM solution (achieved after a total of 4000 LP shaft revolutions).

From this first RHBM solution point, the speed response curve of RHBM solutions depicted in Fig. 10
was generated. Excellent correlation is again seen between the RHBM and the discrete IRM results plotted in
Fig. 10.
3.2.3. Discussion

It is to be noted that, as indicated in Fig. 1, SFDs 1 and 3 were spring-supported and the orbit offsets within
the clearances of these SFDs were mainly due to the respective rotor weights (see Fig. 7a). The rest of the
SFDs, particularly SFDs 4 and 5, relied on the relative vibration (between their journal and housing) to
generate a lifted mean position within their clearances. Hence, it is the prediction of the response at these
unsupported SFDs that posed the major computational challenge for the iterative process, particularly in the
presence of a large number of harmonics.

Fig. 11 shows the development of the harmonic content of the RHBM SFU speed response at one of the
unsupported SFDs. This figure refers to the relative y displacement (mean removed) and velocity, the latter
being included since the SFD force is a function of both relative displacement and velocity. This spectrum
simply features the LP-synchronous frequency (‘‘1LP’’) and its harmonics: the HP-synchronous frequency is
absent since there is no HP unbalance. It is also evident that an adequate number of harmonics has to be
retained due to their prominence in the velocity spectrum.

Fig. 12 shows the development of the harmonic content of the RHBM MFU speed response at one of the
unsupported SFDs. This spectrum features both LP- and HP-synchronous components, along with non-
synchronous frequencies which are multiples of Oð1Þ=5. It is evident that the sub-synchronous harmonics are
Fig. 10. MFU speed response curves of y relative displacements at SFDs (vertical axes give half peak–peak amplitude normalised by radial

clearance).
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Fig. 11. Development of harmonics in RHBM SFU response at an unsupported SFD (harmonic amplitudes normalised with respect to

greatest amplitude in the respective diagram).

Fig. 12. Development of harmonics in RHBM MFU response at an unsupported SFD (harmonic amplitudes normalised with respect to

greatest amplitude in the respective diagram).
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Fig. 13. Point-to-point computation time in generating the RHBM speed response curves using a rudimentary speed-control continuation

process: (a) case A: SFU and (b) case B: MFU.
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prominent in the relative displacement signals whereas the super-synchronous signals are prominent in the
relative velocity signals.

Fig. 13 shows the variation of the computation time per solution point for both SFU and MFU speed
response curves. The typical solution times per point for the two cases were 5 and 50 s, respectively. The total
(cumulative) times to generate the speed response curve for the two cases were 85 and 550min, respectively.
However, these total times can be significantly cut through improvement of the algorithms used for the
continuation procedure. Such numerical issues are outside the scope of this paper. Suffice to say that the
continuation procedure used here was a rudimentary one in which the LP-speed was the control parameter
and the solution at a prescribed speed-step was solved using the solution at the previous step as the predictor.
When the iteration showed signs of divergence, it automatically restarted with a reduced step-size as many
times as necessary until the solution converged. The spikes in Fig. 13 indicate that a large portion of the total
time was taken up by a few very narrow regions where the process struggled to advance the solution. It is likely
that a switch to arc-length continuation [6] in these regions would significantly reduce the number of failed
attempts, thereby cutting the total computation time.

Finally, it should be emphasised that the RHBM is highly useful even in the absence of a continuation
procedure. As illustrated in Section 3.2.1, ‘‘unfinished’’ time-domain solutions at a number of discrete speeds,
each generated with crude tolerance settings over a small number of revolutions can each be ‘‘finished off’’ and
refined to steady-state in a matter of seconds using the RHBM. This of course is conditional on the time-
domain solution being indeed periodic in the steady-state, as in all the results presented here. As observed in
Ref. [1], reducing the degree of sealing from l ¼ 0.03 (as used in the present paper) to a very low level
(l ¼ 0.01), all other parameters being kept the same, resulted in a steady-state quasi-periodic response which
could only be computed by a time-domain technique, as discussed in the Introduction.
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4. Conclusions

In this paper, a whole-engine RHBM has been devised that, for the first time, has allowed the frequency
domain computation of the steady-state periodic unbalance vibration of a whole aero-engine model with
nonlinear bearings. The method uses the receptance functions of the linear part of the structure under non-
rotational conditions, obtained from a one-off eigenvalue analysis, to set up the equations for the rotating
nonlinear assembly. The unknowns solved for are the Fourier coefficients of the relative displacements at the
nonlinear bearings plus a few extra unknowns. These latter unknowns enable solution of the problem in the
presence of statically indeterminate rotors that have just one linear point support or none at all. Simulation
tests were performed on a realistically sized representative twin-spool engine with rotors running at different
speeds for both SFU (unbalance distribution confined to one rotor) and MFU (unbalance on both rotors). In
either case, excellent correlation with time-marching results was obtained. For the cases studied, the
computation time for MFU was about 10 times greater than SFU due to the larger number of harmonics
necessary to describe the solution. However, for either case, it has been demonstrated that, when used in
conjunction with a time-marching solver like the recently developed IRM, the RHBM is a very powerful tool
that should greatly facilitate the hitherto highly restricted nonlinear dynamic analysis of realistic engine
structures.
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Appendix A. Assembly of the matrices qq̄=qz, qqðkÞcos=qz, qq
ðkÞ
sin=qz

For each SFD no. i, i ¼ 1yN, calculate the partial derivatives:

q
qv̄i

q̄i

qð1Þi cos

qð1Þi sin

..

.

qðKÞi cos

qðKÞi sin

2
666666666664

3
777777777775
;

q

qvðkÞi cos

q̄i

qð1Þi cos

qð1Þi sin

..

.

qðKÞi cos

qðKÞi sin

2
666666666664

3
777777777775
;

q

qvðkÞi sin

q̄i

qð1Þi cos

qð1Þi sin

..

.

qðKÞi cos

qðKÞi sin

2
666666666664

3
777777777775
; k ¼ 1 . . .K . (41)

Now

qq̄
qz
¼ 02N�nextra

qq̄
qv̄

qq̄

qvð1Þcos

qq̄

qvð1Þsin
. . .

qq̄

qvðKÞcos

qq̄

qvðKÞsin

" #
, (42)

where

qq̄
qv̄
¼ blkdiag

qq̄1
qv̄1

; . . . ;
qq̄N

qv̄N

� �
, (43a)

qq̄

qvðmÞcos

¼ blkdiag
qq̄1

qvðmÞ1 cos

; . . . ;
qq̄N

qvðmÞN cos

( )
, (43b)

qq̄

qvðmÞsin

¼ blkdiag
qq̄1

qvðmÞ1 sin

; . . . ;
qq̄N

qvðmÞN sin

( )
; m ¼ 1 . . .K . (43c)
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For k ¼ 1 . . .K :

qqðkÞcos
qz
¼ 02N�nextra

qqðkÞcos
qv̄

qqðkÞcos
qvð1Þcos

qqðkÞcos
qvð1Þsin

. . .
qqðkÞcos
qvðKÞcos

qqðkÞcos
qvðKÞsin

" #
, (44)

where for each k:

qqðkÞcos
qv̄
¼ blkdiag

qqðkÞ1 cos

qv̄1
; . . . ;

qqðkÞN cos

qv̄N

( )
, (45a)

qqðkÞcos
qvðmÞcos

¼ blkdiag
qqðkÞ1 cos

qvðmÞ1 cos

; . . . ;
qqðkÞN cos

qvðmÞN cos

( )
, (45b)

qqðkÞcos
qvðmÞsin

¼ blkdiag
qqðkÞ1 cos
qvðmÞ1 sin

; . . . ;
qqðkÞN cos

qvðmÞN sin

( )
; m ¼ 1 . . .K . (45c)

For qqðkÞsin=qz, replace the subscript ‘‘cos’’ by ‘‘sin’’ in the numerators of the partial derivative expressions of
Eqs. (44) and (45).
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